XFEM; geometrical enrichment; linear enrichment; vector level sets; crack propagation
Résumé :
[en] We present a three-dimensional (3D) vector level set method coupled to a recently developed stable extended finite element method (XFEM). We further investigate a new enrichment approach for XFEM adopting discontinuous linear enrichment functions in place of the asymptotic near-tip functions. Through the vector level set method, level set values for propagating cracks are obtained via simple geometrical operations, eliminating the need for solution of differential evolution equations. The first XFEM variant ensures optimal convergence rates by means of geometrical enrichment, i.e., the use of enriched elements in a fixed volume around the crack front, without giving rise to conditioning problems. The linear enrichment approach significantly simplifies implementation and reduces the computational cost associated with numerical integration. The two dicretization schemes are tested for different benchmark problems, and their combination to the vector level set method is verified for non-planar crack propagation problems.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
AGATHOS, Konstantinos ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Ventura, Giulio; Politecnico di Torino > Structural, Geotechnical and Building Engineering
Chatzi, Eleni; ETH Zurich > Civil, Environmental, and Geomatic Engineering
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Stable 3D XFEM/vector-level sets for non-planar 3D crack propagation and comparison of enrichment schemes
Date de publication/diffusion :
2017
Titre du périodique :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Maison d'édition :
Wiley, Chichester, Royaume-Uni
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
FNR10318764 - Multi-analysis Of Fretting Fatigue Using Physical And Virtual Experiments, 2015 (01/07/2016-30/06/2019) - Stéphane Bordas
Organisme subsidiant :
ERC Stg grant agreement No. 279578 Fonds National de la Recherche Luxembourg FWO-FNR grant INTER/FWO/15/10318764 Swiss National Science Foundation research grant # 200021_153379