Eprint diffusé en premier sur ORBilu (E-prints, Working papers et Carnets de recherche)
Linear smoothed extended finite element method
Murugesan; Natarajan, Sundararajan; Gadyam, Palani et al.
n.d.
 

Documents


Texte intégral
main_Lsmxfem.pdf
Preprint Auteur (500.61 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
smoothed finite element method; extended finite element method; numerical integration; linear smoothing; constant smoothing; three dimensional crack; fracture mechanics
Résumé :
[en] The extended finite element method (XFEM) was introduced in 1999 to treat problems involving discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables elements to be split by a discontinuity, strong or weak and hence requires the integration of discontinuous functions or functions with discontinuous derivatives over elementary volumes. Moreover, in the case of open surfaces and singularities, special, usually non-polynomial functions must also be integrated.A variety of approaches have been proposed to facilitate these special types of numerical integration, which have been shown to have a large impact on the accuracy and convergence of the numerical solution. The smoothed extended finite element method (SmXFEM) [1], for example, makes numerical integration elegant and simple by transforming volume integrals into surface integrals. However, it was reported in [1, 2] that the strain smoothing is inaccurate when non-polynomial functions are in the basis. This is due to the constant smoothing function used over the smoothing domains which destroys the effect of the singularity. In this paper, we investigate the benefits of a recently developed Linear smoothing procedure [3] which provides better approximation to higher order polynomial fields in the basis. Some benchmark problems in the context of linear elastic fracture mechanics (LEFM) are solved to compare the standard XFEM, the constant-smoothed XFEM (Sm-XFEM) and the linear-smoothed XFEM (LSm-XFEM). We observe that the convergence rates of all three methods are the same. The stress intensity factors (SIFs) computed through the proposed LSm-XFEM are however more accurate than that obtained through Sm-XFEM. To conclude, compared to the conventional XFEM, the same order of accuracy is achieved at a relatively low computational effort.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Murugesan
Natarajan, Sundararajan;  Indian Institute of Technology-Madras > Mechanical Engineering
Gadyam, Palani
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Langue du document :
Anglais
Titre :
Linear smoothed extended finite element method
Date de publication/diffusion :
n.d.
Version :
1
Nombre de pages :
21
Disponible sur ORBilu :
depuis le 11 janvier 2017

Statistiques


Nombre de vues
202 (dont 4 Unilu)
Nombre de téléchargements
422 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu