Günther, Janne-Kathrin[University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit >]

22-Sep-2016

University of Luxembourg, Luxembourg, Luxembourg

Docteur en Mathématiques

189

Olbrich, Martin

Ludwig, Jean

Thalmaier, Anton

Beltita, Ingrid

Hilgert, Joachim

Pasquale, Angela

[en] C*-algebra ; Lie group ; Dual space ; Topology ; Fourier transform ; Operator fields

[en] In this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly.