Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A real-time model predictive position control with collision avoidance for commercial low-cost quadrotors
DENTLER, Jan Eric; KANNAN, Somasundar; OLIVARES MENDEZ, Miguel Angel et al.
2016In IEEE Multi-Conference on Systems and Control (MSC 2016), Buenos Aires, Argentina, 2016
Peer reviewed
 

Documents


Texte intégral
DENTLER_jan_MSC16_corrected.pdf
Postprint Éditeur (1.67 MB)
Télécharger
Annexes
20160407_ca_static.mp4
(8.11 MB)
Video of quadrotor collision avoidance
Télécharger
20160407_square.mp4
(6.54 MB)
Video of quadrotor stabilization
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mobile robots; Predictive control; Real-time systems
Résumé :
[en] Unmanned aerial vehicles (UAVs) are the future technology for autonomous fast transportation of individual goods. They have the advantage of being small, fast and not to be limited to the local infrastructure. This is not only interesting for delivery of private consumption goods up to the doorstep, but also particularly for smart factories. One drawback of autonomous drone technology is the high development costs, that limit research and development to a small audience. This work is introducing a position control with collision avoidance as a first step to make low-cost drones more accessible to the execution of autonomous tasks. The paper introduces a semilinear state-space model for a commercial quadrotor and its adaptation to the commercially available AR.Drone 2 system. The position control introduced in this paper is a model predictive control (MPC) based on a condensed multiple-shooting continuation generalized minimal residual method (CMSCGMRES). The collision avoidance is implemented in the MPC based on a sigmoid function. The real-time applicability of the proposed methods is demonstrated in two experiments with a real AR.Drone quadrotor, adressing position tracking and collision avoidance. The experiments show the computational efficiency of the proposed control design with a measured maximum computation time of less than 2ms.
Centre de recherche :
SnT
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Ingénierie aérospatiale
Sciences informatiques
Auteur, co-auteur :
DENTLER, Jan Eric ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KANNAN, Somasundar ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OLIVARES MENDEZ, Miguel Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOOS, Holger  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A real-time model predictive position control with collision avoidance for commercial low-cost quadrotors
Date de publication/diffusion :
20 septembre 2016
Nom de la manifestation :
2016 IEEE Multi-Conference on Systems and Control (MSC 2016)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Buenos Aires, Argentine
Date de la manifestation :
19-09-2016 to 22-09-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
IEEE Multi-Conference on Systems and Control (MSC 2016), Buenos Aires, Argentina, 2016
Pagination :
519-525
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR9312118 - Controller Design For Cooperative Flying Manipulation Using Small Quadrotor Uavs, 2014 (15/11/2014-14/11/2018) - Jan Eric Dentler
Intitulé du projet de recherche :
FNR FLYMAN
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 18 octobre 2016

Statistiques


Nombre de vues
384 (dont 45 Unilu)
Nombre de téléchargements
1933 (dont 39 Unilu)

citations Scopus®
 
40
citations Scopus®
sans auto-citations
32
citations OpenAlex
 
46
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu