[en] In this paper, we further develop a recently proposed control method to switch
a bistable system between its steady states using temporal pulses. The motivation for using
pulses comes from biomedical and biological applications (e.g. synthetic biology), where it is
generally di cult to build feedback control systems due to technical limitations in sensing and
actuation. The original framework was derived for monotone systems and all the extensions
relied on monotone systems theory. In contrast, we introduce the concept of switching function
which is related to eigenfunctions of the so-called Koopman operator subject to a xed control
pulse. Using the level sets of the switching function we can (i) compute the set of all pulses that
drive the system toward the steady state in a synchronous way and (ii) estimate the time needed
by the
ow to reach an epsilon neighborhood of the target steady state. Additionally, we show
that for monotone systems the switching function is also monotone in some sense, a property
that can yield e cient algorithms to compute it. This observation recovers and further extends
the results of the original framework, which we illustrate on numerical examples inspired by
biological applications.
Disciplines :
Mathématiques Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Sootla, Aivar; Université de Liège - ULg
MAUROY, Alexandre ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Shaping Pulses to Control Bistable Monotone Systems Using Koopman Operator
Cataudella, I., Sneppen, K., Gerdes, K., Mitarai, N., Conditional cooperativity of toxin-antitoxin regulation can mediate bistability between growth and dormancy. PLoS Comput Biol, 9(8), 2013, 1003174.
Gardner, T., Cantor, C.R., Collins, J.J., Construction of a genetic toggle switch in escherichia coli. Nature 403 (2000), 339–342.
Levskaya, A., Weiner, O.D., Lim, W.A., Voigt, C.A., Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461 (2009), 997–1001.
Mauroy, A. and Mezic, I. (2016). Global stability analysis using the eigenfunctions of the Koop-man operator. IEEE Tran Autom Control. doi: 10.1109/TAC.2016.2518918. In press.
Mauroy, A., Mezić, I., Moehlis, J., Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Physica D 261 (2013), 19–30.
Menolascina, F., Di Bernardo, M., Di Bernardo, D., Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica, Special Issue on Systems Biology 47:6 (2011), 1265–1270.
Mettetal, J.T., Muzzey, D., Gomez-Uribe, C, van Oudenaarden, A., The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae. Science 319:5862 (2008), 482–484.
Mezić, I., Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynam 41:1-3 (2005), 309–325.
Mezic, I., Analysis of fluid flows via spectral properties of the Koopman operator. Annual Review of Fluid Mechanics 45 (2013), 357–378.
Mezic, I., On applications of the spectral theory of the Koopman operator in dynamical systems and control theory. IEEE Conf Decision Control, 2015, 7034–7041.
Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J., In silico feedback for in vivo regulation of a gene expression circuit. Nat biotechnol 29:12 (2011), 1114–1116.
Purnick, P., Weiss, R., The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol 10:6 (2009), 410–422.
Sootla, A. and Mauroy, A. (2016a). Operator-theoretic characterization of eventually monotone systems. Provisionally accepted for publication in Automatica. http://arxiv.org/abs/1510.01149.
Sootla, A. and Mauroy, A. (2016b). Properties of isostables and basins of attraction of monotone systems. In Proc Amer Control Conf (to appear). http://arxiv.org/abs/1510.01153v2.
Sootla, A., Oyarzún, D., Angeli, D., Stan, G.B., Shaping pulses to control bistable biological systems. Proc Amer Control Conf, 3138-3143, 2015.
Sootla, A., Oyarzún, D., Angeli, D., Stan, G.B., Shaping pulses to control bistable systems: Analysis, computation and counterexamples. Automatica 63 (2016), 254–264.
Strelkowa, N., Barahona, M., Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface 7:48 (2010), 1071–1082 doi:10.1098/rsif. 2009.0487.
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N., On dynamic mode decomposition: Theory and applications. J Comput Dynamics 1:2 (2014), 391–421.
Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., Batt, G., Hersen, P., Long-term model predictive control of gene expression at the population and single-cell levels. Proc. Nat. Academy Sciences 109:35 (2012), 14271–14276.