[en] We proposes an algorithm to learn automata infinite alphabets, or at least too large to enumerate. We apply it to define a generic model intended for regression, with transitions constrained by intervals over the alphabet. The algorithm is based on the Red \& Blue framework for learning from an input sample. We show two small case studies where the alphabets are respectively the natural and real numbers, and show how nice properties of automata models like interpretability and graphical representation transfer to regression where typical models are hard to interpret.
Disciplines :
Computer science
Author, co-author :
Pellegrino, Gaetano; Delft University of Technology > Faculty of Electrical Engineering, Mathematics and Computer Science
HAMMERSCHMIDT, Christian ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Lin, Qin; Delft University of Technology > Faculty of Electrical Engineering, Mathematics and Computer Science
Verwer, Sicco; Delft University of Technology > Faculty of Electrical Engineering, Mathematics and Computer Science
External co-authors :
yes
Language :
English
Title :
Learning Deterministic Finite Automata from Infinite Alphabets
Publication date :
October 2016
Number of pages :
12
Event name :
The 13th International Conference on Grammatical Inference