CAMINO, R. D., HAMMERSCHMIDT, C., & STATE, R. (17 July 2020). Working with Deep Generative Models and Tabular Data Imputation [Paper presentation]. First Workshop on the Art of Learning with Missing Values (Artemiss), Vienna, Austria. |
CAMINO, R. D., HAMMERSCHMIDT, C., & STATE, R. (2020). Minority Class Oversampling for Tabular Data with Deep Generative Models. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/43194. |
DU, M., HAMMERSCHMIDT, C., VARISTEAS, G., STATE, R., BRORSSON, M. H., & Zhang, Z. (2019). Time Series Modeling of Market Price in Real-Time Bidding. In 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Peer reviewed |
CAMINO, R. D., HAMMERSCHMIDT, C., & STATE, R. (2019). Improving Missing Data Imputation with Deep Generative Models. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/43196. |
KAIAFAS, G., HAMMERSCHMIDT, C., LAGRAA, S., & STATE, R. (2019). An Experimental Analysis of Fraud Detection Methods in Enterprise Telecommunication Data using Unsupervised Outlier Ensembles. In G. KAIAFAS, C. HAMMERSCHMIDT, ... R. STATE, 16th IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2019). Piscataway, United States - New York: Institute of Electrical and Electronics Engineers. Peer reviewed |
KAIAFAS, G., HAMMERSCHMIDT, C., LAGRAA, S., & STATE, R. (2019). Auto Semi-supervised Outlier Detection for Malicious Authentication Events. ECML PKDD 2019 Workshops. doi:10.1007/978-3-030-43887-6_14 Peer reviewed |
CAMINO, R. D., HAMMERSCHMIDT, C., & STATE, R. (July 2018). Generating Multi-Categorical Samples with Generative Adversarial Networks [Paper presentation]. ICML 2018 workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden. |
HAMMERSCHMIDT, C. (2017). Learning Finite Automata via Flexible State-Merging and Applications in Networking [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/33624 |
HAMMERSCHMIDT, C., Garcia, S., Verwer, S., & STATE, R. (October 2017). Reliable Machine Learning for Networking: Key Concerns and Approaches [Poster presentation]. The 42nd IEEE Conference on Local Computer Networks (LCN), Singapore, Singapore. |
Verwer, S. E., & HAMMERSCHMIDT, C. (2017). flexfringe: A Passive Automaton Learning Package. In Software Maintenance and Evolution (ICSME), 2017 IEEE International Conference on. doi:10.1109/ICSME.2017.58 Peer reviewed |
HAMMERSCHMIDT, C., STATE, R., & Verwer, S. (August 2017). Human in the Loop: Interactive Passive Automata Learning via Evidence-Driven State-Merging Algorithms [Poster presentation]. Human in the Loop Machine Learning Workshop at the International Conference on Machine Learning, Sydney, Australia. |
LAGRAA, S., François, J., Lahmadi, A., Minier, M., HAMMERSCHMIDT, C., & STATE, R. (2017). BotGM: Unsupervised Graph Mining to Detect Botnets in Traffic Flows. In CSNet 2017 Conference Proceedings. Peer reviewed |
HAMMERSCHMIDT, C., Verwer, S., Lin, Q., & STATE, R. (2016). Interpreting Finite Automata for Sequential Data. Interpretable Machine Learning for Complex Systems: NIPS 2016 workshop proceedings. Peer reviewed |
HAMMERSCHMIDT, C., Marchal, S., Pellegrino, G., STATE, R., & Verwer, S. (November 2016). Efficient Learning of Communication Profiles from IP Flow Records [Poster presentation]. The 41st IEEE Conference on Local Computer Networks (LCN). |
HAMMERSCHMIDT, C., Marchal, S., STATE, R., & Verwer, S. (October 2016). Behavioral Clustering of Non-Stationary IP Flow Record Data [Poster presentation]. 12th International Conference on Network and Service Management. |
Pellegrino, G., HAMMERSCHMIDT, C., Lin, Q., & Verwer, S. (October 2016). Learning Deterministic Finite Automata from Infinite Alphabets [Paper presentation]. The 13th International Conference on Grammatical Inference. |
HAMMERSCHMIDT, C., LOOS, B. L., Verwer, S., & STATE, R. (October 2016). Flexible State-Merging for learning (P)DFAs in Python [Paper presentation]. The 13th International Conference on Grammatical Inference. |
Lin, Q., HAMMERSCHMIDT, C., Pellegrino, G., & Verwer, S. (2016). Short-term Time Series Forecasting with Regression Automata [Poster presentation]. ACM SIGKDD 2016 Workshop on Mining and Learning from Time Series (MiLeTS). |