[en] This paper concerns two aspects of the multi-
agent consensus problem on the n-sphere. Firstly, it proves
that a standard consensus protocol, in a certain sense, yields
asymptotical stability on a global level for a nontrivial
class of graph topologies. Secondly, it provides a novel
consensus protocol that leaves the centroid of agent states
in Rn+1 projected back to the sphere invariant. It hence
becomes possible to determine the consensus point as a
function of the initial states. Much of the stability analysis
has an intuitive geometric appeal since it is based on the
symmetries of the n-sphere rather than generic Lyapunov
theory.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MARKDAHL, Johan ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Song, Wenjun; KTH Royal Institute of Technology > Department of Mathematics
Hu, Xiaoming; KTH Royal Institute of Technology > Department of Mathematics
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Global and invariant aspects of consensus on the n-sphere
Date de publication/diffusion :
juillet 2016
Nom de la manifestation :
22nd International Symposium on Mathematical Theory of Networks and Systems
Organisateur de la manifestation :
University of Minnesota
Lieu de la manifestation :
Minneapolis, Etats-Unis - Minnesota
Date de la manifestation :
12-07-2016 to 15-07-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems