Reference : AcTinG: Accurate Freerider Tracking in Gossip
Scientific congresses, symposiums and conference proceedings : Unpublished conference
Engineering, computing & technology : Computer science
Computational Sciences
AcTinG: Accurate Freerider Tracking in Gossip
Decouchant, Jérémie mailto [University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > >]
Ben Mokhtar, Sonia [CNRS LIRIS - INSA Lyon]
Quéma, Vivien [Grenoble INP]
IEEE Symposium on Reliable Distributed Systems
from 6-10-2014 to 9-10-2014
[en] Accountability ; Privacy ; Peer-to-peer
[en] Gossip-based content dissemination protocols are a scalable and cheap alternative to centralised content sharing systems. However, it is well known that these protocols suffer from rational nodes, i.e., nodes that aim at downloading the content without contributing their fair share to the system. While the problem of rational nodes that act individually has been well addressed in the literature, colluding rational nodes is still an open issue. Indeed, LiFTinG, the only existing gossip protocol addressing this issue, yields a high ratio of false positive accusations of correct nodes. In this paper, we propose AcTinG, a protocol that prevents rational collusions in gossip-based content dissemination protocols, while guaranteeing zero false positive accusations. We assess the performance of AcTinG on a testbed comprising 400 nodes running on 100 physical machines, and compare its behaviour in the presence of colluders against two state-of-the-art protocols: BAR Gossip that is the most robust protocol handling non-colluding rational nodes, and LiFTinG, the only existing gossip protocol that handles colluding nodes. The performance evaluation shows that AcTinG is able to deliver all messages despite the presence of colluders, whereas both LiFTinG and BAR Gossip suffer heavy message loss. It also shows that AcTinG is resilient to massive churn. Finally, using simulations involving up to a million nodes, we show that AcTinG exhibits similar scalability properties as standard gossip-based dissemination protocols.
Researchers ; Students ; General public

File(s) associated to this reference

Fulltext file(s):

Open access
paper.pdfAuthor preprint326.79 kBView/Open

Bookmark and Share SFX Query

All documents in ORBilu are protected by a user license.