AcTinG: Accurate Freerider Tracking in Gossip

Sonia Ben Mokhtar
CNRS - LIRIS
sonia.benmokhtar @insa-lyon.fr

Abstract—Gossip-based content dissemination protocols are a
scalable and cheap alternative to centralised content sharing
systems. However, it is well known that these protocols suffer
from rational nodes, i.e., nodes that aim at downloading the
content without contributing their fair share to the system.
While the problem of rational nodes that act individually has
been well addressed in the literature, colluding rational nodes
is still an open issue. Indeed, LiFTinG, the only existing gossip
protocol addressing this issue, yields a high ratio of false positive
accusations of correct nodes. In this paper, we propose AcTinG, a
protocol that prevents rational collusions in gossip-based content
dissemination protocols, while guaranteeing zero false positive
accusations. We assess the performance of AcTinG on a testbed
comprising 400 nodes running on 100 physical machines, and
compare its behaviour in the presence of colluders against two
state-of-the-art protocols: BAR Gossip that is the most robust
protocol handling non-colluding rational nodes, and LiFTinG, the
only existing gossip protocol that handles colluding nodes. The
performance evaluation shows that AcTinG is able to deliver
all messages despite the presence of colluders, whereas both
LiFTinG and BAR Gossip suffer heavy message loss. It also
shows that AcTinG is resilient to massive churn. Finally, using
simulations involving up to a million nodes, we show that AcTinG
exhibits similar scalability properties as standard gossip-based
dissemination protocols.

I. INTRODUCTION

It is well known that content sharing applications account
for a large proportion of traffic over the Internet. The most
popular of these applications include collaborative download-
ing (e.g., BitTorrent) and peer-to-peer live streaming (e.g.,
P2PLive). Relying on the P2P paradigm offers robustness to
failures, scalability up to hundreds of thousands of nodes, and
adaptability. Indeed, P2P systems can handle massive node
arrival/departure and are highly resilient to churn. From the
point of view of content providers, relying on a P2P system
allows shifting cost (e.g., bandwidth) to clients, and avoids the
need for maintaining dedicated servers.

A major problem that face large scale P2P systems deployed
on the public domain is the existence of rational nodes, i.e.,
nodes that aim at receiving content without contributing their
fair share, by forwarding it to others. Existing studies have
shown that the presence of even a small portion of rational
nodes significantly degrades the system performance [1]-[5].
This is why a number of protocols have been devised in
the last decade to deal with the problem of rational nodes
in collaborative systems, (e.g., rational resilient live stream-
ing [6]-[8], spam filtering content dissemination [9] and N-
party transfer [10]). All these protocols provide incentives that
encourage/force rational nodes to participate in the system.

Jérémie Decouchant
Grenoble University
jeremie.decouchant@imag.fr

Vivien Quéma
Grenoble INP
vivien.quema@imag.fr

However, apart from the protocol presented in [8], all the ex-
isting solutions work under the assumption that rational nodes
do not collude. This problem though has been demonstrated to
be a reality in existing file sharing applications [11]. Handling
colluding nodes is a difficult problem provided that colluders
generally perform unobservable actions from the point of
view of the collaborative protocol [12], which makes their
deviations difficult to deter. For example, a group of colluders
could be a group of nodes that collaborate to exchange content
between each other “off the record” (e.g., using the silent
broadcast protocol described in [12]). Such colluders do not
share with nodes not belonging to the group the content they
receive off the record, thus harming the protocol.

To the best of our knowledge, the only gossip-based con-
tent dissemination protocol trying to prevent collusions is
the LiFTinG protocol [8]. In this protocol, nodes log their
interactions with other nodes and perform distributed audits
of each others logs. In order to be cost effective, this protocol
relies on cryptography-free procedures and statistical analysis
of these logs. For instance, a node is suspected of colluding
with another node if the frequency of its interactions with
the latter is greater than an expected average. Unfortunately,
as analysed by the authors themselves, due to their statistical
nature and to message losses, the mechanisms implemented
in LiFTinG do not allow to catch all rational collusions (false
negatives), and may even lead to wrong exclusions of correct
nodes (false positives). Experiments that we performed, and
that are described in Section VI-B, confirm this result and
further show that, for instance, when 30% of nodes collude
(either in a large group or in small collusion groups), correct
nodes observe 25% of message losses.

The challenge we embrace in this paper is the design of a
rational-resilient content dissemination protocol that prevents
collusions to occur and that does not wrongfully exclude
correct nodes. An observation one can start with is: a colluding
behaviour can be considered as a Byzantine behaviour [13].
A legitimate question is thus to know whether it is possible
to rely on existing techniques for Byzantine fault tolerance
and Byzantine fault detection, such as Nysiad [14], PeerRe-
view [15], Accountable Virtual Machines [16], Trinc [17], or
A2M [18]? The answer is No. The reason is that these generic
solutions for Byzantine fault tolerance and detection either
assume a limited proportion of faulty nodes, or the existence
of trusted nodes or hardware. Instead, we assume in this paper
that all nodes can be rational, and we do not rely on any trusted
entity, whether software or hardware.

In this paper, we present AcTinG a content dissemination
protocol that tolerates an unlimited number of (possibly col-
luding) rational nodes, while guaranteeing that no correct node
is ever expelled, and that all rational deviations are eventually
detected. To reach this objective, we adopt a different approach
than the one used in the LiFTinG protocol: rather than trying to
detect collusions a-posteriori, we built AcTinG in such a way
that it is not in the interest of nodes to collude. We analyse
each step of the protocol and describe the incentives that force
rational (possibly colluding) nodes to stick to the protocol. We
perform a performance evaluation of AcTinG. Its performance
is compared with two protocols: BAR Gossip, the state-of-the-
art gossip protocol that is able to handle non-colluding rational
nodes and LiFTinG, the state-of-the-art gossip protocol that is
able to handle colluding nodes. We implement a streaming
application that we deploy on top of the three protocols. We
deploy 400 nodes on one hundred physical machines and show
that AcTinG is able to deliver the entire stream despite the
presence of colluders, whereas LiFTinG and BAR Gossip,
both suffer heavy message losses. We also show that AcTinG
is resilient to churn, and using complementary simulations
involving up to a million nodes, that it is scalable: it yields a
logarithmic growth of memory and bandwidth consumption,
comparable to standard gossip based protocols [19].

The rest of the paper is structured as follows. Section II
describes our system model. Section III introduces the core
ideas of AcTinG. Section IV provides a detailed presentation
of AcTinG. Section V discusses its resilience to (colluding)
rational nodes. Section VI presents a detailed performance
evaluation. Section VII reviews the related works. Section VIII
concludes the paper.

II. SYSTEM MODEL

We consider a system with N nodes, which are uniquely
identified, e.g., using a hash value of their IP address. We
assume that nodes can join and leave the system (gently or
by crashing) at any time. We consider two classes of nodes:
correct nodes and rational nodes. Correct nodes follow the
protocol. Rational nodes are defined as in [7] extended with
the notion of collusion: they aim at getting the content (i.e.,
missing the lowest possible number of updates) at the lowest
possible overhead in terms of bandwidth consumption. This
means that rational nodes would deviate in any sort from the
protocol, possibly by colluding with each other, as long as the
deviation saves their resources while not impacting the quality
of the content they are getting.

Specifically, the benefit of colluding rational nodes can be
represented along the following axes:

1) (Stream Quality) Receiving as much as possible (possi-
bly, all) stream updates,

2) (Communication) Sending as little as possible (possibly,
none) stream updates or protocol messages to nodes not
belonging to their coalition,

3) (Computation) Performing as little as possible compu-
tations for other nodes.

Colluding rational nodes would typically exchange updates
off the record, and, in order to save bandwidth, would not
share the updates they obtained secretly with nodes outside
their group. It is important to note that rational nodes are risk
averse, i.e., they never deviate from the protocol if there is
any risk of being evicted from the system. This assumption
is commonly used in BAR systems [20]. Furthermore, this
assumption is particularly relevant in our context as we use
accountability techniques to deter faults and accuse nodes (as
described in the following section). In this context, when a
fault is detected, a proof of misbehaviour is produced, which
can convince any correct node in the system of the necessity
of evicting the misbehaving node. As eviction corresponds to
an infinite penalty, no benefit is worth taking such risk. We
also suppose that rational nodes join and remain in the system
for a long time and seek a long-term benefit.

We refer to the source as the node that is disseminating a
given content. We assume that each content is disseminated
from a single source at a time but our principles can be easily
applied to systems where the content is disseminated from
multiple sources at the same time. We assume that all nodes
but the source may be rational, or experience failures, and
may organise themselves in colluding groups of arbitrary sizes.
Classical fault-tolerance techniques (e.g., [21]) can relax the
assumption that the source does not fail.

We assume that the network allows every pair of nodes
to exchange messages, and that they are eventually received
if retransmitted sufficiently often. We also assume that hash
functions are collision resistant and that cryptographic primi-
tives cannot be forged. We assume that nodes are provided a
pair of asymmetric keys, and denote a message m signed by
a node 7 using its private key as (1m)q(;).

As in [7] and [22], we assume that nodes maintain clocks
synchronised within ¢ seconds, and we structure time as a
sequence of rounds in which nodes exchange updates. We
assume that nodes have a secure log that is used to check
their correctness through its analysis. A secure log is a log
that is tamper evident and append only. Many systems recently
defined variants of secure logs among which [15]-[18]. We
build on the secure log presented in [15].

III. PROTOCOL OVERVIEW

We present AcTinG, a gossip-based dissemination protocol
that guarantees the following two properties: (i) a correct
node is never expelled, and (ii) a rational node that deviates
from the protocol in a way that impacts the performance of
correct nodes is eventually suspected by all correct nodes. In
the remainder of this section, we describe the principles of
AcTinG that allow us to guarantee the above two properties.
Protocol details are then presented in Section IV.

Figure 1 shows an overview of our protocol. In this fig-
ure, the source node s, which is the node from which the
dissemination originates, cuts the content into chunks that we
call updates. It then periodically disseminates these updates
to a set of nodes (arrows 1 in the figure). To join this content
dissemination session, a new node (p,, in the figure) needs

p, predecessors

7

Secure log Disconnection

Update exchanges --—p Join request

J
By
—>

Reporting of

—» node departure

Audit

Fig. 1. Overview of AcTinG.

to know a node that is already part of it, as described in
Section IV-A (arrow 2 in the figure). In the middle of the
figure, a node p,, which characterises any node in the system
except the source, has a set of nodes that it has selected as
partners (depicted on its right side in the figure). Further, p,
has a set of nodes that selected it as a partner (depicted on its
left side), to which we refer as p,’s predecessors. Periodically,
Dy has to share with its partners (arrow 4 in the figure) and with
its predecessors (arrow 3 in the figure) the updates it received.
In order to maximise the quality of the content it receives,
p, may be tempted to (1) act rationally by receiving updates
and not sharing them with its partners, or predecessors, and
(2) collude with other nodes in the system (not necessarily its
partners or predecessors) to get updates off the record without
sharing them with anyone else. To avoid these temptations, the
core idea underlying AcTinG is to make nodes accountable
for their actions. Specifically, each node in AcTinG logs in
a secure log its interactions with other nodes in the system,
including the identifiers of the updates it received. Because
any node can verify the information in the log of a node
it is interacting with, the latter will be obliged to send to
its partners the updates it has, and to receive the updates it
is missing. Consequently, no node will have an interest in
behaving rationally or forming collusions. Indeed, assume that
node p, colludes with another node to receive an update u off
the record. Node p, will not be able to record update u in its
log (because the exchange was unofficial; we explain later how
it is done). The good news for node p,, is that it does not have
to forward u to other nodes because u does not appear in its
log. The problem is that the next time a correct node having
u in its log will interact with node p,, it will send update
u to p,. Consequently, p, will eventually have to forward u,
and thus will have wasted its bandwidth, because it will have
received u twice (off the record and from a correct node).
This core idea raises several questions and challenges that
we answer in the remainder of this section.
“What if p, chooses only colluders as partners with which
it will interact with in the near future?”. This way, p,
could accept updates and arrange with its future partners so
as they do not audit its log, or so they do not send it updates

it already received unofficially. Our protocol deals with this
issue by forcing nodes to (periodically) establish random,
yet deterministically verifiable partnerships as presented in
Section I'V-B. Specifically, each time a node p, has to change
its partners, it computes their identifier using a pseudo random
generation function seeded with a deterministically computed
seed. As such, nodes that will audit its log will be able to
verify the legitimacy of the partners that it has selected.
“What if a node, p,, maintains many (correct) logs?”. For
instance, p, could have a log in which an update u appears,
which it will show to nodes who already have u (to avoid
sending it to them), and another log in which the same update
does not appear, which will be presented to nodes that do not
have u (to avoid having to send it to them). This problem is
known as equivocation, i.e., the ability to make conflicting
statements to different participants [17]. We deal with this
issue by forcing nodes to audit their partners’ logs at the
beginning of each new partnership (arrow 5 in the figure).
This audit verifies the consistency of the log of a node as a
whole as presented in Section IV-C.

“Isn’t this periodic exchange of logs a performance
overkill?”. It is not necessary to audit the logs of nodes each
time two nodes exchange updates. Indeed, we build on the
assumption that colluders, and rational nodes in general, are
risk averse. Hence, it is enough to ensure that for each step of
the protocol, a deviation has a high probability to be detected
in the near future, in order to make sure that rational nodes will
not deviate. Consequently, instead of performing audits each
time nodes communicate, audits are triggered in a random yet
verifiable manner. Indeed, audits (from the point of view of
audited nodes) must not be predictable, because rational nodes
would seize an opportunity to deviate undetected if they could
predict them. Yet they must be verifiable (from the point of
view of nodes performing them), because rational nodes have
to be forced to trigger this procedure. To reach this objective,
a node that starts a new partnership with a node performs a
deterministic computation that results in a boolean telling it
whether it should audit its partner or not.

“What if rational nodes decide not to answer to correct
nodes to avoid trading updates, or being audited?”’. There
are many reasons why a rational node may be tempted not
to answer to a request from a correct node. This could, for
instance, preserve it from sending its log and being audited as
a result (arrow 6 in the figure). This type of misbehaviour
is known as omission failures. We deal with this problem
using a mechanism where unresponsive nodes are eventually
suspected by all correct nodes, which stop interacting with
them (as described in Section IV-A). As it is not in the interest
of rational nodes to be isolated in the system, a rational node
in AcTinG will answer all correct node requests. To avoid
correct nodes to be expelled from the system because one of
their message has been lost or delayed, we allow suspicions
to be released, e.g., if the missing message eventually arrives.
Similarly, rational nodes may be tempted to wrongly suspect
correct nodes of omission failure, by claiming that they did not
send a given message to them, as it is the only reason why a

node can skip mandatory interactions. We avoid this deviation
by overcharging the sending of suspicion messages in such
a way that it is more costly to suspect a node of omission
failure than to effectively interact with it. As such, nodes
would suspect other nodes of omission failures only if they are
really missing a given message. Instead, if a node effectively
left the system (assume node p, in the figure), its predecessors
(among which, node p, in the figure) contact p,’s partners to
collect evidence about the effective unresponsiveness of p, (as
described in Section IV-A). Then, p,. sends this evidence to the
source node (arrow 7 in the figure), which eventually updates
the membership list, and will also inform its partners during
future exchanges.

Summarising, our protocol builds on accountability tech-
niques, and on a set of mechanisms to provide incentives to
rational, possibly colluding, nodes to stick to the protocol.
Specifically, to avoid nodes from selecting their partners, our
protocol relies on random yet verifiable partnerships. To be
efficient it relies on random yet verifiable audits. To discourage
rational nodes from being falsely unresponsive, our protocol
handles omission failures. Finally, to discourage nodes from
wrongly suspecting their partners our protocol associates an
extra cost with suspicion messages.

IV. PROTOCOL DETAILS

We have presented the principles of AcTinG in the previous

section. In this section, we detail the steps of the protocol.
In a nutshell, AcTinG divides time in rounds. At each round
the source disseminates new updates, which come to expiration
after RTE rounds, to a small set of randomly chosen nodes.
To get updates, each node initiates and maintains partnerships
with other nodes with whom it exchanges updates at each
round. The partners are selected using a pseudo-random num-
ber generator function, i.e., PRNG, seeded deterministically
(e.g., with the node’s public key concatenated with the round
number). At the beginning of a round, each node contacts all
of its partners in order to propose updates to them and to
request updates from them. Every Period rounds, each node
updates its set of partners. Each time a node starts a new
partnership with a node, the two nodes audit each others’
log with a given probability. The membership is managed in
a distributed manner by nodes who periodically inform the
source of the arrival and the departure of nodes. Yet, it is the
responsibility of the source to disseminate an updated list of
alive nodes every Epoch rounds.
The remainder of this section describes the sub protocols
constituting AcTinG in detail, as follows. First, we present
the membership protocol (Section IV-A), which allows deal-
ing with new nodes joining the system, nodes leaving it
and unresponsive nodes. Then, we present the partnership
management (Section IV-B), the audit (Section IV-C) and
the update exchange protocols (Section IV-D), which allow
handling the partnerships between nodes, auditing their logs
and exchanging updates between partners, respectively.

A. Membership protocol

The membership protocol handles the arrival and the depar-
ture of nodes as well as the management of the membership
list. Our membership protocol is fully distributed, rational
resilient, and handles massive nodes arrival and departure.

(4) Send new .
nodes list / (5) Confirm
join

Fig. 2. Arrival of a new node.

New epoch

Pn
1) Send join
()rnessagje (2) Send
Contact nodes list

node Px (3) Add Pn to the list
of nodes

Source Node

Node arrival: The arrival of a new node follows the
sequence of messages depicted in Figure 2. In this figure, we
assume that node p,,, which would like to join a given content
dissemination session, has installed the AcTinG software. This
means that p,, has an empty secure log with the related security
primitives. We also assume that p,, knows an entry point in
the system, say p,, which we call the contact node of p,,. To
join a content dissemination session, p,, sends a join request
to p, (step (1) in the diagram). The latter replies with the list
of active nodes of the current epoch (step (2) in the diagram).
Using this list, p,, computes its list of new partners using
the PRNG function as described in Section IV-B and contacts
them to start receiving the content. At the beginning of a new
round, each node, including node p, informs the source of the
arrival of new members that have contacted it (step (4)). Using
theses messages, the source confirms to the new members their
integration in the system and updates the membership list (step

5).

px _(1) Add Py to suspected nodes list (6) Remove Py from suspected nodes

\2) Suspect (Py, m) / /
(4) Send(m)
Py %
\ ®) /(5) Py is alive
Ping(Px,m)

Fig. 3. Handling of an omission failure.

11

—» 10

Partners(Py)

Node departure and omission failures: If a node p, is
expecting a message from one of its partners p, for too long',
it suspects p,, of omission failure as depicted in the diagram of
Figure 3. Specifically, p, adds p, in its local list of suspected
nodes (step (1) in the figure) and sends a suspicion message
to the other partners of p, (step (2)). This message includes
the type of message that p, is expecting from p,,. Then, each
of p,’s partners pings p, (step (3)). If p, is alive, it replies to
both its partners and p, with the missing message (step (4)).
After a given time slot, each of p,’s partners replies to p,
with a signed message certifying whether p, responded to the
ping message or not (step (5)). Using this message, p, either

!Delays for node suspicion are configured in an implementation dependent
manner

removes p, from its list of suspected nodes if p, replied (step
(6)) or sends an eviction message to the source including the
messages received from p,’s partners.
To be sure that a rational node will never suspect a correct
node, in order to avoid initiating or accepting an interaction,
we make the cost of sending a suspicion message higher than
the cost of a normal interaction. Hence, unless it is a real
suspicion, a node will never suspect another node.
Membership list update: Periodically, nodes that served
as contact nodes for others send their list of new nodes to
the source. Furthermore, nodes that hold an evidence of the
departure of one partner send it to the source. The latter
updates the membership list and sends it, at the beginning
of each epoch, to the nodes along with the content. In order
to fasten the removal of dead nodes from the membership list,
an optimisation consists in letting the source disseminate the
list of dead nodes at the beginning of each round along with
the stream, instead of waiting the following epoch. As soon as
a node receives these incremental updates from the source, it
removes the corresponding nodes from its list of alive nodes,
which avoids selecting them when new partnerships have to be
established before the new epoch. In order to preserve nodes
from the massive arrival of new nodes, which may consume
their bandwidth, we adopt the optimisation defined in [22],
which allows splitting the load between the older nodes and the
new ones. Specifically, this optimisation prevents new nodes
from establishing too many partnerships with older nodes.

B. Partnership management

Each node p, maintains partnerships with f other nodes,
which are selected with the PRNG function seeded with a
deterministically computed seed (e.g., p,’s public key concate-
nated with the round number) among the non-suspected nodes
of the last membership list. This process is depicted in the
diagram of Figure 4. If a selected node is not responding, node
P, has to propagate a suspicion, and once it is confirmed, p,
is allowed to find a new partner. Every Period rounds, a node
p, breaks the f partnerships it initiated, without informing its
partners which know when the partnerships are supposed to
end. A node having an identifier id will change its partnerships
during round r if (id + r) mod Period = 0. To initiate a
new partnership with a node py, node p, sends an association
request to p, (step (2) in the diagram).

At the beginning of a partnership, a node p, may trigger an
in-depth audit of its new partner p, (step (4) in the diagram),
by contacting the partners p, had in the RTE previous rounds,
and asking them to return their own log of the last RTE
rounds including the current round (step (5) in the diagram).
To reduce the cost of the protocol, nodes perform these audits
in a random manner, i.e., each time they are in a position to
perform an audit, they flip a coin and decide whether they
should audit their partner or not. Nevertheless, to avoid that
rational nodes hide behind this randomness to avoid auditing
their partners, we make this randomness verifiable. Towards
this purpose, we use the secure log authenticators, which are
signed messages computed from the node’s log as detailed in

Section IV-C. These values are unpredictable as they depend
on the current state of a node’s log. Specifically, each time a
node p, is in a position to perform an audit of a new partner
Dy, it computes the hash of its public key concatenated with the
public key of p, and the round number. The value of this hash
modulo 100 gives a number that p, uses to decide whether it
should audit its new partner. For instance, if the probability of
auditing a node fixed by the protocol is 30%, p, audits p, if
the result of the modulo function is between 0 and 29. Node
p, further logs the authenticators it used to compute the value
of this boolean, in order to justify, in future audits, the reason
why it performed or did not perform the audit of p,. If the
audit must take place, p, contacts p,’s partners, and asks for
their logs.

(1) After Period rounds,
Px choose f new partners

(4) Audit Py with given
probability.

(7) Check Py's
correctness

(2) Association message (5) Audit —» 11
—» 1-n
Py —
(3) Check the association.
Audit Px with given (6) Log
Last Partners probability.

of Py

Fig. 4. Establishment of new associations between nodes, which may imply
audits.

C. Audit protocol

In our protocol, the secure log is used to keep track of the
communication a node had with other nodes in the system.
Specifically, each entry in the log of a node A corresponds to
a message sent (resp. received) by A to (resp. from) another
node B. A log entry e; is of the form e; = (seqno;, h;, ¢;)
where seqno; is a monotonically increasing sequence number,
h; is a hash value linked with the previous entries in the
log and ¢; is a type-specific content, which may include the
message sent (resp. received) by A as well as other information
such as authenticators (as defined below). The value of h; is
computed as follows: h; = H(h;—1||seqno;||H(c;)), where
ho =0, H is a hash function and || stands for concatenation.

Each time a log entry e; is added to the log of a node A,
an authenticator «; is generated. This authenticator, which is
a signed message a; = (seqno;, hi)s(a). states that A has
a log entry e; with a corresponding hash %;. By sending the
authenticator «; to a node B, A commits to having logged the
entry e; and to the content of its log before e;. Any node that
receives «; can use it to inspect e; and all the entries preceding
e; in the log of A. Upon reception of a log, any node is able
to recompute the hash values it contains, according to the log
entries, and thus to check their validity. In addition, a log entry
for a received message must include a matching authenticator,
implying that a node cannot invent an entry for a message it
did not receive. These two properties make the secure logs
tamper-evident and append only.

As described in the partnership management protocol, when
node p, must audit node p,, it asks p,,’s partners to return their
logs. Upon reception of these logs, node p, verifies:

(1) the consistency of the logs, by recomputing the recursive
hash values associated to log entries,

(ii) the presence of the exchanges p, was supposed to initiate,
(iii) that p, declared the updates it was supposed to receive
from the source, if p, was supposed to interact with the source,
(iv) that the exchanges correspond to a correct execution of the
protocol, i.e., that p, proposed to all its partners all the updates
that appear in its log, that p, requested from its partners all
the updates it was missing, that p, served to its partner all
the updates they were requesting and that p, logged all the
identifiers of the updates it received,

(v) that p, suspected all its partners that did not follow a
given step of the protocol as prescribed by the omission failure
protocol,

(vi) that p, audited all the partners it was supposed to audit.
As any other node, the source also maintains partnerships and
regularly changes its partners, i.e., the nodes it serves. The
source follows the partnership management and the updates
exchange protocols, except that it does not send any log and
it is not audited by nodes?. This forces the nodes to log the
identifiers of the updates they received from the source, as they
are deterministically chosen among the epoch membership list,
which is known by all nodes. Hence, any node can check that
the received updates were correctly declared. As the serving
rate of the source is constant, the identifier of the updates that
are released at each round are also known.

D. Update exchanges

At the beginning of each round and for the duration of
their partnership, two partners p, and p, exchange updates as
depicted in Figure 5. Specifically, node p,, (resp. p,) starts the
exchange by generating a proposition message containing the
identifiers of all the updates that appear in its log and that did
not expire yet. Node p, (resp. py) logs this proposition mes-
sage in its log and generates the corresponding authenticator.
Then, p, (resp. p,) sends the proposition message along with
the corresponding authenticator to p,. Upon reception of the
proposition message, which it logs, node p,, (resp. p,) selects
the updates it is missing and replies to p, (resp. p,) with an
update request. The update request is logged at the two parties.
Finally, p, (resp. p,) serves the missing updates, and logs the
serve message. Each partner then terminates the exchange by
logging the identifiers of the updates it received, in its log.
The nodes will then propagate the received updates during the
following rounds, because we cannot ensure that nodes will
immediately share them.

V. RISK VERSUS GAIN ANALYSIS

The aim of this section is to demonstrate that rational nodes
will not collude with their partners, because audits will detect
deviations with a high probability, and because the estimated
gain of collective deviations is low. Complementary to this
analysis is a proof that the protocol is a Nash equilibrium.
This proof lists all the protocol steps and possible rational
deviations and proves that rational nodes do not have any
interest in deviating from the protocol whether individually

2We recall that the source is assumed to be a correct node.

Node px Node py

Round r
Send(Propose_Updates,py) 1) Send(Propose_Updates,px)
Receive(Propose_Updates,px) Receive(Propose_Updates,py)
Send(Request_Updates,px) v} Send(Request_Updates,py)
Receive(Request_Updates,py) Receive(Request_Updates,px)
Send(Serve_Updates,py) @3) Send(Serve_Updates,px)

Receive(Serve_Updates,px)

Receive(Serve_Updates,py)

Fig. 5. Update exchanges between nodes.

or as a group. Due to the lack of space, this proof is available
in the companion technical report [23].

We first evaluate the risk that two colluding partners take
by deviating, for example when interacting as prescribed by
the protocol, but without logging the updates they exchange.
Specifically, consider two partners p, and p, that decide
to collude. Assume p, holds update u. To help p, saving
bandwidth in future rounds, p, sends a proposition message
to p, that does not contain u, but logs that it has proposed
u. As such, the logs of p, and p, appear correct if audited
separately as p, can not be blamed of not requesting u (as the
official proposition sent by p, does not contain u) and p, can
not be blamed of not proposing u as it appears in his log that
he has done so. We define the risk as the probability that such
a deviation is deterred by an audit.

Let us compute this risk. If any of the two colluding nodes
is audited during the time where the exchange is contained
in their logs, they will be discovered. Let us consider a
system of N nodes, where C' nodes are part of a single
colluding group. A node’s log contains the entries of the last
RTFE rounds. A participating node initiates f partnerships
with other nodes, which are changed after Period rounds.
Let P,,q4i¢+ the probability that a node audits each of its
new partners. When establishing a new partnership, a rational
node is not audited if its new partner is colluding with it
(which happens with probability %), or if the new partner
is correct but the protocol prescribes not to perform the audit.
On average, each of the two nodes interacts with MF{;X#
partners during the time the deviation is visible. Finally,

we obtain that the risk a deviation is detected is equal to:
RTE

2.f.

(1= (§+ (1= §) x (1= Puna) ¥

Let us now compute the gain of performing the above
deviation. To do this we need to compute the number of
interactions that a rational node may have with correct nodes
that do not hold the update u after receiving it from its
colluding partner, i.e., correct nodes to which the rational node
would have had to send u if it has received it officially from its
colluding partner. To do so, we use the algorithm of Figure 6.
The principle of this algorithm is that during each of the RT E
rounds that follow the round at which the deviation occurred,
2 % f interactions happen. Each of these interactions, has a
probability % to involve another colluding node. When it is
not the case, this other node owns the missing update with

a probability that depends on the number of rounds elapsed
since its release by the source. We evaluate this probability
using another algorithm, detailed in the companion technical
report [23]. When the rational node receives the update from
a correct node, it will have to share it with its future partners.

saved_sends_nb = 0;
for round_id in 1..RTE do
for association_id in 1..2*f do

if random() > < then
if random/() < probability[round_id] then
return return saved_sends_nb;
else
saved_sends_nb = saved_sends_nb + 1;
end if
end if
end for
end for
return saved_sends_nb;

Fig. 6. Pseudocode of the algorithm used to estimate the number of times a
colluding node avoids to send an update.

Using the average of the outputs of this algorithm, we can
compute the proportion of interactions in which an update will
not be sent by rational nodes. To obtain the long term gain,
we multiply this proportion by the probability that a rational
node has to meet an accomplice to be able to execute this
deviation, which is £.

Computing the risk, and the gain, with the values of the
parameters used in the protocol and further described in the
following section, we obtain that the risk two colluding nodes
take is equal to 60%, and the long term gain of the associated
deviation is equal to 3%. Thus, rational nodes are exposed with
a high risk each time they execute the deviation, and can only
hope for a very small benefit. As a result, we conclude that
rational nodes will not collude with their partners to exchange
updates off the record. As said above, a complete analysis of
the incentives provided by the protocol can be found in [23].
Note that nodes can still collude silently with nodes that are
not their partners. Yet, it they do so, they are still obliged to
execute the protocol correctly, i.e., request updates they do
not officially hold and propose updates they officially hold to
correct nodes. Hence, their collusion will not have any impact
on the quality of the stream perceived by correct nodes.

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the
AcTinG protocol. We start by introducing our methodology
(Section VI-A). Then, we compare the impact of colluders
on AcTinG, BAR Gossip, and LiFTinG (Section VI-B). We
choose BAR Gossip as it is the most robust rational resilient
content dissemination protocol that has been proposed so
far and LiFTinG as it is the only state-of-the-art content
dissemination protocol that handles colluders. We then assess
the bandwidth consumption of AcTinG (Section VI-C), its per-
formance in the case of massive node departure (Section VI-D)
and its scalability in terms of memory and bandwidth con-

sumption using simulations involving up to a million nodes
(Section VI-E).

Overall, our evaluation draws the following conclusions:
In a real deployment involving 400 nodes and in presence
of colluders, correct nodes using AcTinG do not experience
any degradation in the quality of the content they receive
while those using BAR Gossip and LiFTinG experience heavy
message loss in presence of colluders independently from their
organisation (whether in small or larger groups). On the other
hand, we show that nodes that decide to collude in AcTinG
experience a heavy overhead, which discourages them from
staying in the coalition. Moreover, we show that AcTinG band-
width consumption is reasonable and that AcTinG is resilient
to massive node departure. Finally, we show that AcTinG is
scalable as simulations involving up to a million nodes exhibit
that both the bandwidth and memory consumptions of AcTinG
follow a logarithmic growth in the number of nodes. However,
we acknowledge that the source may become a bottleneck
as the number of nodes increase, as it periodically receive
notifications. Solving this issue is classically done by using a
tracker, i.e., a centralised server that handles membership, as in
the FlightPath protocol [22], which could easily be integrated
in our system. The tracker could even be replicated using
classical fault-tolerance techniques (e.g., [21]).

A. Methodology and Parameter Setting

To assess the performance of AcTinG, BAR Gossip and
LiFTinG, we used them to implement three video live stream-
ing applications. In these applications, a source node, selected
randomly, diffuses a video stream at a rate of 300 kbps, during
5 minutes, and proposes each update to 5 random nodes.
Updates are then disseminated using either AcTinG, BAR
Gossip or LiFTinG, respectively. In order to provide a fair
comparison, we implemented the three streaming applications
in Java using the same code base. We deployed the three
applications in 400 nodes running in one hundred physical
machines of the Grid5000 cluster, interconnected with a 1Gb/s
network that we limited to 1Mb/s. Each machine is composed
of an Intel Xeon L5420 processor clocked at 2.5GHz with
32GB of RAM. In the three applications, to provide further
tolerance to message loss (combined with retransmissions), the
source groups packets in windows of 40 packets, including 4
FEC 3 coded packets.

The duration of one round is set to one second, and updates
are released 10 seconds before being consumed by the nodes
media player. Note that nodes dynamically adapt the number
of their partners according to the size of the membership list:
each node establishes [w-‘ partnerships that it maintains
for a duration of five rounds. For instance, in the fault free
case, with N = 400, each node has 3 partners. At the
beginning of each partnership, nodes performed audits with a
probability of 5%, which, as we show in Section V, allows the
system to detect deviations with a probability of 60% when
up to 10% of the audience colludes in a single group. The

3FEC stands for Forward Error Correction.

cryptographic primitives consisted in a 1024-bit RSA signature
and a SHA-1 hash.

B. Impact of Colluders

In this section, we experimentally study the impact of col-
luders on the BAR Gossip, LiFTinG, and AcTinG protocols.
We implemented colluders from the code base of correct nodes
in each protocol as follows. Colluders exchange unofficially
among each other all the stream updates they received from
correct nodes. Furthermore, colluders execute all the possible
undetectable rational deviations that exist in the underlying
protocol. For instance, in BAR Gossip, colluders never take
part of the optimistic push protocol, which allows nodes
to altruistically push updates to other nodes. Similarly, in
LiFTinG, colluders do not audit the logs of other nodes and
do not reply to messages sent by other nodes asking them
to assess the behaviour of their previous partners unless the
considered partner is among the group. As a result, correct
nodes will be blamed by their correct auditors. In this situation
the system administrator has two choices: (1) adjust the
detection threshold to avoid false positives (by decreasing
its value), which opens the doors to colluders for freeriding
or (2) adjust the detection threshold to detect colluders (by
increasing its value), which results in very high values of
false positive accusations. In this experiment, we considered
the first situation. A complementary experiment showed that in
the second situation, adjusting the threshold to exclude 20% of
colluders incurred the exclusion of 43% of correct nodes in the
system. Finally, in AcTinG, colluders do not forward updates
they received unofficially to their correct partners unless they
also received them officially.

We varied the number of colluders, as well as the size
of colluding groups. We measure the percentage of missed
updates observed by correct nodes in presence of a proportion
of colluders. We first studied the case in which all colluders
belong to the same group. Results are depicted in Figure 7.
The X axis presents the proportion of nodes that collude,
while the Y axis presents the percentage of missed updates
experienced by correct nodes in presence of colluders. We
notice that correct nodes miss up to 98% of updates with BAR
Gossip and 72% of updates with LiFTinG, whereas they do
not miss any update with AcTinG.

We then studied the impact of spreading colluders in mul-
tiple independent groups. More specifically, we made several
experiments in which we distributed 30% of all the nodes in
colluding groups of identical size. We depict the results in
Figure 8. The X axis presents the size of colluding groups,
while the Y axis presents the percentage of missed updates
observed by correct nodes. We observe that spreading collud-
ers in different groups has the same impact on the quality of
the content downloaded by correct nodes.

Group size 2 4 8 10 50
Overhead (%) | 34.35 | 51.53 | 60.12 | 61.84 | 67.33
TABLE I

OVERHEAD OF COLLUDERS IN ACTING.

100 - ®
Q BAR Gossip —e— -
< 90 r Lifting —m— O
1%} AcTinG —4— .
L 80
S [] n
3 70 .
=] —
5 60 . .
& .
K2} 50 °
E w "
S] o m
§ ¥ o =
5 20 .
Q /./
o 10 g
o - =

o A A A A A A A A A A A
0 5 10 15 20 25 30 35 40 45 50 55 60

Proportion of colluders (%)

Fig. 7. Proportion of missed updates by correct nodes when a given proportion
of the audience collude as a single group.

50
= BAR Gossip
> Lifting ===
» AcTinG ===
o 40
©
°
o
5
- 30
0]
[}
k]
E 20
S)
C
Rel
s 10
o
o
o

0 (] =

2 4 5 10 20

Size of colluding groups

Fig. 8. Proportion of missed updates by correct nodes when 30% of the
audience is rational, and collude in independent groups of equal sizes.

The reason why correct nodes do not observe missed
updates when using AcTinG is that we designed AcTinG
in such a way that colluders will eventually receive all the
updates officially from their correct partners and will thus be
obliged to forward them officially to their correct partners.
Hence, engaging in a colluding group only yields an extra
overhead due to the unofficial dissemination of updates among
the group. We have measured this overhead and results are
depicted in Table I. From this table we observe that the
overhead due to collusion is at least of 34% of the size of
the stream (case of a group containing only two colluders).
In addition, as seen in section V, in a scenario where 10%
of nodes collude, and where audits are performed 5% of the
time, each deviation will be detected with a probability of
60%. Moreover, exchanging updates without declaring them
will provide at most a gain equal to 3%. Consequently, nodes
in AcTinG have no interest in colluding as they would not
observe any increase in the quality of the stream they get,
take a very high risk of being evicted, experience very low
benefit, while suffering a useless waste of bandwidth.

C. Bandwidth consumption

To assess the overhead of AcTinG, we plot in Figure 9 the
cumulative distribution of the average bandwidth consumption

of nodes. Recall that AcTinG is used to broadcast a 300kbps
stream. Figure 9 shows that AcTinG induces a reasonable
overhead (that is mostly due to the transmission of logs). We
also measured the memory consumption of AcTinG, which
is due to the storage of secure logs and authenticators. Our
measures have showed that a node consumes 3MB of memory
for each partnership, in the worst case.

100 AcTinG ——

90
80 f

<
°§ 70 ,,J{
8 60 |
5 50
S 40 /
£ f
S 30
2 20
10 /
o J
300 400 500 600

Bandwidth (kbps)

Fig. 9. Fault-free case: Cumulative distribution of average bandwidths.

D. Resilience to massive node departure

In the case of a massive node departure, the remaining nodes
need to quickly replace their left partners with alive nodes in
order not to miss updates. In this experiment, we measure the
bandwidth consumption and the percentage of missed updates
when 60% and 70% of nodes suddenly leave the streaming
session. Results are depicted in Figures 10 and 11 respectively.
Specifically, we observe in Figure 10 that the massive node
departure, which happens 500 seconds after the beginning of
the experiment, immediately causes a decrease in the average
bandwidth consumed by the remaining nodes, as they stop
exchanging messages with their left partners. This decrease
(62% and 75% in the case of the departure of 60% and 70% of
nodes, respectively) is followed by an increase (of up to 18%
and 27% in the former two cases), which corresponds to the
messages exchanged by nodes to establish new partnerships
(including a given proportion of audits). Finally, we observe
that 30 seconds later, the average bandwidth consumption
stabilises around 430 kbs (13% less than the original value),
which is due to the decrease of the necessary number of
partners per node.

We also compute the percentage of nodes that do not receive
a viewable stream*. We observe in Figure 11 that only 2,5%
nodes do not receive a viewable stream during the first second
when 60% nodes leave the system, and between 5% and 15%
nodes do not receive a viewable during at most five seconds
when 70% nodes leave the system.

E. Scalability

We performed simulations to evaluate the bandwidth, and
the memory consumption, of AcTinG when the number of

4The stream is not viewable when more than 5% of the streaming windows
cannot be displayed because of missed updates [7]

700

602/0
600 | 70% - . Massive departure |
‘g 500 F
S
= 400
<
5
= 300
©
5
m 200 J
100 1
0
200 300 400 500 600 700
Time (s)
Fig. 10. Nodes average bandwidth after a massive departure.
20
e
0% oo Massive departure
& g5t]
(%2}
o}
°
I}
<
S 10 r 1
c
)
5 |
o 5F R i
&
0 ”
480 500 520 540
Time (s)
Fig. 11. Percentage of nodes that do not receive a viewable stream after a

massive departure.

nodes increases in the system.

Results, depicted in Table II, show that both the bandwidth
consumption and the memory consumption of AcTinG grow
logarithmically with respect to the number of nodes in the
system. Indeed, these values depend linearly on the number
of partners a node has, which grows logarithmically with the
system size.

System size | Bandwidth consumption | Memory usage
(Kbps) (Mb)
100 380.0 6.4
500 436.6 9.5
3,000 511.1 12.7
22,000 603.4 159
160,000 713.5 19.1
1,200,000 841.4 22.3

TABLE II

AVERAGE BANDWIDTH AND MEMORY USAGE OF ACTING IN FUNCTION
OF THE SYSTEM SIZE.

VII. RELATED WORKS

In this section, we focus on peer-to-peer content dissemi-
nation protocols that handle rational nodes. These protocols
can be classified into two categories, according to the way
file chunks (called updates in the following) are exchanged
between nodes. The first category of protocols is composed

of symmetric protocols. These protocols force nodes to col-
laborate, as the number of updates they get from a node is
proportional to the number of updates they have to offer (this
principle is often referred to as tit-for-tat). BAR Gossip [7]
and FlightPath [22] are symmetric protocols relying on game
theory. Both provide incentives to ensure that rational nodes
respectively have no, or a limited, interest in deviating from
the protocol. In terms of robustness to rational nodes, the
BAR Gossip protocol exhibits stronger properties than the
FlightPath protocol. Indeed, nodes in FlightPath are assumed
to deviate only if the benefit they get is higher than a threshold,
which is not the case in BAR Gossip. While the authors of
these two protocols point out the problem of colluding rational
nodes in [7], none of them address it.

The second category of protocols is composed of asymmet-
ric protocols. These protocols require nodes to altruistically
push update identifiers to other nodes, which subsequently
pull updates of interest. A first protocol in that category is
the one presented in [24]. This protocol aims at adapting
the contribution of nodes to the systems, according to their
available resources. This protocol assumes the existence of
trusted auditors that run in dedicated external nodes and does
not deal with colluders. A second protocol in that category
is LiFTinG [8]. To the best of our knowledge, LiFTinG
is the only existing peer-to-peer content dissemination pro-
tocol that tackles the problem of colluding rational nodes.
Specifically, LiFTinG sporadically verifies the distribution of
the interactions a given node performed with other nodes in
the system. Nodes that collude with other nodes break the
uniform distribution of partner selection, which may result in
their detection. In order to be cost effective, LiFTinG only
performs sporadic audits, and relies on non-secure logs that
can contain wrong information, be incomplete, be tampered
with and, as a consequence, be inconsistent the ones with
respect to the others. As a result, LiFTinG suffers from two
major limitations: correct nodes can be wrongly evicted from
the system (false positives), and a proportion of colluding
rational nodes can harm the system without being detected
(false negatives).

VIII. CONCLUSION

A number of gossip-based content dissemination protocols
tolerating rational behaviours have been proposed. A limitation
of these protocols is that they do not handle rational nodes that
collude, i.e. that act as a group in order to improve their bene-
fit. The only exception is the LiFTinG protocol that performs
sporadic checks on insecure logs to try to detect colluding
nodes. We have shown in this paper that neither LiFTinG
nor BAR Gossip, the most robust rational resilient content
dissemination protocol, are effectively resilient to colluders.
In this paper, we have presented AcTinG, the first content
dissemination protocol that tolerates rational nodes acting both
individually and in collusions, and that guarantees zero false
positive accusations. Performance evaluation combining both a
real deployment and simulations has demonstrated that nodes
running AcTinG are able to deliver the entire content despite

the presence of colluders. We have also shown that AcTinG is
resilient to churn, and exhibits very desirable scalability prop-
erties with a logarithmic growth of memory and bandwidth
consumption, comparable to standard gossip based protocols.
Our future work includes the study of the applicability of the
AcTinG principles to other types of collaborative applications
for the accurate detection of rational (possibly colluding)

nodes.
IX. ACKNOWLEDGEMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday,
vol. 5, no. 10, 2000.

[2] R. Krishnan et al., “The impact of free-riding on peer-to-peer networks,”
in System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on. 1EEE, 2004, pp. 10—pp.

[3] M. Feldman et al., “Free-riding and whitewashing in peer-to-peer
systems,” Selected Areas in Communications, IEEE Journal on, vol. 24,
no. 5, pp. 1010-1019, 2006.

[4] J. F. e Oliveira et al., “Can peer-to-peer live streaming systems coexist
with free riders?” in Peer-to-Peer Computing, 2013. P2P’13. IEEE 13th
International Conference on, 2013.

[5]1 T. Locher et al., “Free riding in bittorrent is cheap,” in Proc. Workshop
on Hot Topics in Networks (HotNets). Citeseer, 2006, pp. 85-90.

[6] J. J.-D. Mol et al., “Give-to-get: free-riding resilient video-on-demand
in p2p systems,” in Electronic Imaging 2008, 2008.

[7]1 H. C. Li et al., “Bar gossip,” in Proceedings of OSDI’06.

[8] G. et al., “Lifting: lightweight freerider-tracking in gossip,” in Proceed-
ings of Middleware’10.

[9] S. Ben Mokhtar et al., “Firespam: Spam resilient gossiping in the bar

model,” in Proceedings of SRDS, 2010.

X. Vilaga et al., “N-party bar transfer,” in Principles of Distributed

Systems. Springer, 2011, pp. 392-408.

L. Qiao et al., “An empirical study of collusion behavior in the maze

p2p file-sharing system,” in ICDCS’07.

R. Eidenbenzet al., “Hidden communication in p2p networks stegano-

graphic handshake and broadcast,” in INFOCOM, 2011 Proceedings

IEEE. 1EEE, 2011, pp. 954-962.

L. Lamport et al., “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., vol. 4, no. 2, 1982.

C. Ho et al., “Nysiad: practical protocol transformation to tolerate

byzantine failures,” in Proceedings of NSDI'08.

A. Haeberlen et al., “Peerreview: practical accountability for distributed

systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, 2007.

H. Andreasetr al., “Accountable virtual machines,” in Proceedings of

0SDI’'10.

D. Levin et al.,, “Trinc: small trusted hardware for large distributed

systems,” in Proceedings of NSDI’09.

C. Byung-gon et al., “Attested append-only memory: Making adversaries

stick to their word,” in Proceedings of SOSP’07.

E. Patrick et al., “Epidemic information dissemination in distributed

systems,” IEEE Computer, vol. 37, no. 5, 2004.

A. Aiyer et al, “Bar fault tolerance for cooperative services,” in

Proceedings of SOSP, 2005.

T. Bressoud et al., “Hypervisor-based fault tolerance,” ACM Transac-

tions on Computer Systems (TOCS), vol. 14, no. 1, pp. 80-107, 1996.

H. C. Li et al., “Flightpath: obedience vs. choice in cooperative services,”

in Proceedings of OSDI’0S.

S. Ben Mokhtar et al, “Acting: Accurate freerider

in gossip,” University of Grenoble, Tech. Rep.,

https://sites.google.com/site/soniabm/.

R. van Renesse et al., “Enforcing fairness in a live-streaming system,”

in Proceedings of MMCN’08.

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]

[23] tracking

2014,

[24]

