Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Combining Static Analysis with Probabilistic Models to Enable Market-Scale Android Inter-component Analysis
Octeau, Damien; Jha, Somesh; Dering, Matthew et al.
2016In The 43rd Symposium on Principles of Programming Languages (POPL 2016)
Peer reviewed
 

Documents


Texte intégral
octeau2016combining.pdf
Preprint Auteur (5.74 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Android; Inter-component communication; static analysis; probabilistic program analysis
Résumé :
[en] Static analysis has been successfully used in many areas, from verifying mission-critical software to malware detection. Unfortunately, static analysis often produces false positives, which require significant manual effort to resolve. In this paper, we show how to overlay a probabilistic model, trained using domain knowledge, on top of static analysis results, in order to triage static analysis results. We apply this idea to analyzing mobile applications. Android application components can communicate with each other, both within single applications and between different applications. Unfortunately, techniques to statically infer Inter-Component Communication (ICC) yield many potential inter-component and inter-application links, most of which are false positives. At large scales, scrutinizing all potential links is simply not feasible. We therefore overlay a probabilistic model of ICC on top of static analysis results. Since computing the inter-component links is a prerequisite to inter-component analysis, we introduce a formalism for inferring ICC links based on set constraints. We design an efficient algorithm for performing link resolution. We compute all potential links in a corpus of 11,267 applications in 30 minutes and triage them using our probabilistic approach. We find that over 95.1% of all 636 million potential links are associated with probability values below 0.01 and are thus likely unfeasible links. Thus, it is possible to consider only a small subset of all links without significant loss of information. This work is the first significant step in making static inter-application analysis more tractable, even at large scales.
Centre de recherche :
SnT
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Octeau, Damien
Jha, Somesh
Dering, Matthew
McDaniel, Patrick
BARTEL, Alexandre ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
LI, Li ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Combining Static Analysis with Probabilistic Models to Enable Market-Scale Android Inter-component Analysis
Date de publication/diffusion :
janvier 2016
Nom de la manifestation :
The 43rd Symposium on Principles of Programming Languages (POPL 2016)
Date de la manifestation :
from 20-01-2016 to 23-01-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
The 43rd Symposium on Principles of Programming Languages (POPL 2016)
Peer reviewed :
Peer reviewed
Intitulé du projet de recherche :
AndroMap C13/IS/5921289
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 12 avril 2016

Statistiques


Nombre de vues
207 (dont 5 Unilu)
Nombre de téléchargements
576 (dont 3 Unilu)

citations Scopus®
 
48
citations Scopus®
sans auto-citations
39

Bibliographie


Publications similaires



Contacter ORBilu