Article (Scientific journals)
Representations of quantum permutation algebras
SCHLENKER, Jean-Marc; Banica, Teodor; Bichon, Julien
2009In Journal of Functional Analysis, 257 (9), p. 2864-2910
Peer Reviewed verified by ORBi
 

Files


Full Text
Representations of quantum permutation algebras.pdf
Author postprint (346.27 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Quantum permutation; Hadamard matrix
Abstract :
[en] We develop a combinatorial approach to the quantum permutation algebras, as Hopf images of representations of type π:As(n)→B(H)π:As(n)→B(H). We discuss several general problems, including the commutativity and cocommutativity ones, the existence of tensor product or free wreath product decompositions, and the Tannakian aspects of the construction. The main motivation comes from the quantum invariants of the complex Hadamard matrices: we show here that, under suitable regularity assumptions, the computations can be performed up to n=6.
Disciplines :
Mathematics
Author, co-author :
SCHLENKER, Jean-Marc ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Banica, Teodor
Bichon, Julien
External co-authors :
yes
Language :
English
Title :
Representations of quantum permutation algebras
Publication date :
2009
Journal title :
Journal of Functional Analysis
ISSN :
0022-1236
eISSN :
1096-0783
Publisher :
Academic Press
Volume :
257
Issue :
9
Pages :
2864-2910
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 11 February 2016

Statistics


Number of views
67 (1 by Unilu)
Number of downloads
84 (0 by Unilu)

Scopus citations®
 
17
Scopus citations®
without self-citations
7
OpenCitations
 
8
WoS citations
 
16

Bibliography


Similar publications



Contact ORBilu