Présentation scientifique dans des universités ou centres de recherche (Présentations scientifiques dans des universités ou centres de recherche)
A Bayesian inversion approach to recovering material parameters in hyperelastic solids using dolfin-adjoint
HALE, Jack; Farrell, Patrick E.; BORDAS, Stéphane
2015
 

Documents


Texte intégral
FEniCS 15 Presentation Final.pdf
Postprint Éditeur (6.73 MB)
Final Presentation
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] In the first part of the talk I will describe in general terms the link between classical optimisation techniques and the Bayesian approach to statistical inversion as outlined in the seminal book of [Kaipio and Somersalo, 2005]. Under the assumption of an additive Gaussian noise model, a Gaussian prior distribution and a linear parameter-to-observable map, it is possible to uniquely characterise the Bayesian posterior as Gaussian with the maximum aposteriori (MAP) point equal to the minimum of a classic regularised minimisation problem and covariance matrix equal to the inverse of the Hessian of the functional evaluated at the MAP point. I will also discuss techniques that can be used when these assumptions break down. In the second part of the talk I will describe a method implemented within dolfin-adjoint [Funke and Farrell, arXiv 2013] to quantify the uncertainty in the recovered material parameters of a hyperelastic solid from partial and noisy observations of the displacement field in the domain. The finite element discretisation of the adjoint and higher-order adjoint (Hessian) equations are derived automatically from the high-level UFL representation of the problem. The resulting equations are solved using PETSc. I will concentrate on finding the eigenvalue decomposition of the posterior covariance matrix (Hessian). The eigenvectors associated with the lowest eigenvalues of the Hessian correspond with the directions in parameter space least constrained by the observations [Flath et al. 2011]. This eigenvalue problem is tricky to solve efficiently because the Hessian is very large (on the order of the number of parameters) and dense (meaning that only its action on a vector can be calculated, each involving considerable expense). Finally, I will show some illustrative examples including the uncertainty associated with deriving the material properties of a 3D hyperelastic block with a stiff inclusion with knowledge only of the displacements on the boundary of the domain. J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160. New York: Springer-Verlag, 2005. S. W. Funke and P. E. Farrell, “A framework for automated PDE-constrained optimisation,” arXiv:1302.3894 [cs], Feb. 2013. H. P. Flath, L. C. Wilcox, V. Akçelik, J. Hill, B. van Bloemen Waanders, and O. Ghattas, “Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations,” SIAM J. Sci. Comput., vol. 33, no. 1, pp. 407–432, Feb. 2011.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Mathématiques
Auteur, co-auteur :
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Farrell, Patrick E.;  Oxford University > Mathematics Institute
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Langue du document :
Anglais
Titre :
A Bayesian inversion approach to recovering material parameters in hyperelastic solids using dolfin-adjoint
Date de publication/diffusion :
01 juillet 2015
Nom de la manifestation :
FEniCS 15
Organisateur de la manifestation :
Imperial College London
Lieu de la manifestation :
London, Royaume-Uni
Date de la manifestation :
29-6-2015 to 2-7-2015
Manifestation à portée :
International
Focus Area :
Computational Sciences
Projet européen :
FP7 - 279578 - REALTCUT - Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery
Organisme subsidiant :
FNR - Fonds National de la Recherche
EPSRC - Engineering and Physical Sciences Research Council
CER - Conseil Européen de la Recherche
CE - Commission Européenne
European Union
Commentaire :
A video of this presentation is available at the 'Complementary URL' link above.
Disponible sur ORBilu :
depuis le 16 juillet 2015

Statistiques


Nombre de vues
735 (dont 25 Unilu)
Nombre de téléchargements
663 (dont 17 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu