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Overview

Why?
Bayesian approach to inversion.

Relate classical optimisation techniques to the Bayesian
iInversion approach.

Example problem: sparse surface observations of a solid
block.

Use dolfin-adjoint and petsc4py to solve the problem.

Dealing with high-dimensional posterior covariance.
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Why?
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Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?
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Bayesian Approach

Deterministic event - totally predictable.
Random event - unpredictable.
Bayesian approach to inverse problems:
* The world is unpredictable.

* Consider everything as a random variable.
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Terminology

 Observation. Displacements. VY
 Parameter. Material property. X

 Parameter-to-observable map. Finite deformation
hyperelasticity. ( X)
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Bayes [heorem

71-posterior(x | Y) X Tikelihood (y ‘ X)ﬂprior(x)

Goal: Given the observations, find the posterior
distribution of the unknown parameters.
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Three step plan

1. Construct the prior.
2. Construct the likelihood.

3. Calculate/explore the posterior.
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Constructing a prior
(with DOLFIN)

Must reflect our subjective belief about the unknown
parameter.

Difficulty:
How to transfer qualitative information to quantitative.
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Simple example involving a PDE solve: Smoothing Prior

https://bitbucket.org/snippets/jackhale/rk6xA
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https://bitbucket.org/snippets/jackhale/rk6xA

Reminder...

Let xg € R"and I € R"*" be a symmetric positive definite matrix. A multivariate Gaussian
random variable X with mean xp and covariance I' is a random variable with the probability

density:

T(X) = <27T1m> exp (—%(x — Xo)Tr_l(X = Xo)) .

When X follows a multivariate Gaussian, we use the following notation:

X ~ N(Xo, r).
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Qualitative: | think my parameter is smooth and is
probably around zero at the boundary.
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Imagine a parameter related to a physical quantity in
1-dimensional space. Often, the value of parameter at
a point is related to the value of the parameters next

to it.
1
X/' — i(X/—l + X/'—H) + \/\/j
With:

W = N(0, 921

AX =W
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mesh = UnitIntervalMesh (160)

V = FunctionSpace (mesh, “CG”, 1)

u = TrialFunction (V)

v = TestFunction (V)

a = (1.0/2.0)*h*inner (grad(u), grad(v)) *dx

class W (Expression) :
def eval(self, wvalue, x):
value[0] = np.random.normal ()

W = 1nterpolate(W(), V)
A = assemble (A)
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Boundary conditions

1. Dirichlet: set to zero.

2. Extend detinition of Laplacian outside domain.
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values = np.array([1.0, =-0.5], dtype=np.float )
rows = np.array([0], dtype=np.ulntp)

cols = np.array ([0, 171, \
dtype=np.ulintp) A.setrow (0, cols, wvalues)
cols = np.array([V.dim() - 1, V.dim() = 271, \
dtype=np.uintp)
A.setrow(V.dim() - 1, cols, values)

A.apply( )
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EXploring the posterior
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cov(x | y) = /R”(X — Xem)(X — Xcm)TWposterior(X | y) dx € R"™"

XMAP




OK, but how can we use
doltfin-adjoint to do this”

Aim: Connect Bayesian approach to classical
optimisation techniques.
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Wposterior(x | )/) X Tikelihood (y ‘ X)ﬂ-prior(X)

XMAP = arg€£§>< ﬂposterior(x V)
X

XMAP
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Assumptions

1. | think my parameter is Gaussian (prior).

2. My parameter to observable map is linear and my
noise model is Gaussian.

X ~ N(xq, Fprior), X € R"
Y =AX+E,Y €¢R" Ac R

E ~ N0, Thoise), Y € R”
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Plug it in. ..

Wposterior(x ‘ Y) X Tikelihood (y | X)ﬂ-prior(x)

1
7r or(X|y) ocexp | —=(y — L — : o
posterlor( y) P ( 2(y Ax) rn0|se(y AX)) XEXP <_§(X — XO)Trprilor(X - XO)>
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1 _ 1 _
ﬂposterior(X‘Y) X exp (_i(y o AX)Trno]ise(y o AX)) XEXP <_§(X - XO)TrpriI-or(X o XO))

XMAP = arggr[ggx Wposterior(x V)
X

XMAP — arg I@!’n {_ In Wposterior(x | Y)}
X &

1 _ 1 _
o |n Wposterior(x ’ y) — §(y - AX)TrnO]ise(y o AX) T §(X o XO)Trpr}or(X o XO)
! 2 ! 2
= —|ly — Ax||2_1 + =|[x — Xoll2-
2 H H rnolise 2 H H rpl’?-OI’
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Optimise

1
9(xuap) — w( Iy — Ax|2_, +jx - xOH21>

n0|se 2 prior

X:Xmap

ATr 1 (y AXmap) —+ rprlor(Xmap — XO)

noise
=0

XMAP = (r AR L A) (ATrnoisey T rpriorXO)

prior noise
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awnp = (Tl = ATF L A) T (AT ey + Firior0)

prior noise

H=V=r_1 —A'r 1 A

prior noise
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o |n ﬂ-posterior(x | y) _(y AX)TrnO|Se(y AX) T (X — X )Trpnor(x R XO)

1
2
= 2lly — AxlZ_ +5llx— xoll?-

n0|se 2 prior

8.1.7 Sum of two squared forms

In vector formulation (assuming 31, 35 are symmetric)

1

——(x-m)'E 7 (x—my) (358)

(- me) "5 (x — o) (359)

— —%(x —m. ) '3 (x—m.)+C (360)

>l = it xt (361)
m. = (T +31) (2 'm + 3, my) (362)
C = %(m{zl—l +my 3 ) (S 2 TN E my + X5 ' my) (363)
_%(m{gl—lml + mgzglmz) (364)



1 1
—InT % — Zlly — Ax||2_ “llx — xpll4
posterlor( | y) QHY Hrnolise + > | OHrprilor
1

— X — X
2H MAP | H

—1
Tposterior ™ N(xmap. H )
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Back to the problem...



Find xpap that satisfies:

1 2 1 p
minSlly = FOIZ + 5l =l

—1
noise 2 rprior

where the parameter-to-observable map f : R" — R is is defined such that:
F(F(x), x) = DV/Q N(F(x), x) dx =0 Vv € H5(Q), x € L2(Q),

where

H(U,X)Z/Q’L/J(U,X) dx—/rt-uds,

Y(u, x) = g(lc —d)—xIn(J) + % In(J)Z,
ol
F = X = |+ Vu,
C=F'F,
IC = tI’(C),
J = detF.
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from dolfin import *
mesh = UnitSquareMesh(32, 32)

2.0)*(In(J)) **2
Pi = phi*dx

U = VectorFunctionSpace(mesh, "CG", 1)

V = FunctionSpace(mesh, "CG", 1)

# solution

u = Function(U)

# test functz?ns phi = (mu/2.0)*(Ic - dims) - mu*1ln(J) + (lmbda/
v = TestFunction(U)

#

tncremental solution

du = TrialFunction(U)

mu = interpolate(Constant(1.0), V)
lmbda = interpolate(Constant(100.0), V)

gateuxr derivative with respect to u in direction v

i

F = derivative(Pi, u, v)

# and with respect to u in direction du
J

= derivative(F, u, du)
dims = mesh.type().dim()

I -1 i )
P - Idintltzgd;ms) u_h = Function(U)

- gradit F_h = replace(F, {u: u_h})
C = F.T*F
I = det(F) J_h = replace(J, {u: u_h})

- e solve(F_h == 0, u_h, bes, J=J_h)
Ic = tr(C)

dims = mesh.type().dim()

I = Identity(dims)
F =1+ grad(u)

C = F.T*F

J = det(F)

Ic = tr(C)




u obs << File(“observations.xdmf”)

J = Functional (inner(u - u obs, u - u obs)*dx + \
inner (mu, mu))

m = Control (mu)

J hat = ReducedFunctional (J, m)

dJdm = Jhat.derivative () [0]
H = Jhat.hessian (dm) [O]
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Wait a second...

XMAP




XMAP

H™ (xvap)

cov(x




Tposterior ™ N (Xmap. H_l)

approx 1
7Tpggterior ~ N(xmap. H " (xmap))

XMAP
H™ (xmap)

XCM
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Solving

Strategy: Use hooks in dolfin-adjoint to solve with
petsc4py-based contexts.
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* Parameter-to-observable map. Newton-Krylov
method.

* |Inner solve with GAMG preconditioned GMRES
(KSP) with near-null-space set.

* Newton with second-order backtracking line
search (SNES).
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Colin27 brain atlas

« 20% extension test, 16 Core Xeon, 1.12 million
cells, ~29 secs to residual of 1E-10.
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e MAP estimator.

e Bound constrained Quasi-Newton BLMVM with
More-Thuente line search (TAO).

* No Riesz map.
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* Principal Component Analysis.
* Trailing: BLOPEX Locally Optimal Block
Preconditioned Gradient method (SLEPc/
BLOPEX).

e [Leading: Krylov Schur (SLEPC).
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Back to uncertainty
guantification...
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Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?
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Tposterior ™ N (Xmap. H_l)

approx 1
7Tpggterior ~ N(xmap. H " (xmap))

XMAP
H™ (xmap)

XCM
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Big Dense

H c R

Expensive to calculate Only have action
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H=QAQ'

rpost — H_l — QT/\_lQ
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Tralling Eigenvector

Direction in parameter space least constrained by the
observations
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| eading Eigenvectors

Direction in parameter space most constrained by the
observations
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leading_eigenvector_0
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Matches trends from Flath et al. p424 for linear parameter to observable maps.
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Full Hessian.
4000+ actions.
2000 to calculate H. 2000 to extract.

Partial Hessian.
501 actions for 292 for leading.
209 to calculate H. 292 to extract.

Huge savings in computational cost.
Scales with model dimension.
Implement low-rank update.
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summary

We are developing methods to access uncertainty In
the recovered parameters in hyperelastic materials.

This is done within the framework of Bayesian
Inversion.

dolfin-adjoint makes assembling the equations
relatively easy, solving them is tougher.

Next steps: efficient low-rank updates, Hamiltonian
MCMC.
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