
A Bayesian inversion approach to
recovering material parameters in
hyperelastic solids using dolfin-

adjoint
Jack S. Hale, Patrick E. Farrell, Stéphane P. A. Bordas

 ‹

‹›

›

›

1

Overview
• Why?

• Bayesian approach to inversion.

• Relate classical optimisation techniques to the Bayesian
inversion approach.

• Example problem: sparse surface observations of a solid
block.

• Use dolfin-adjoint and petsc4py to solve the problem.

• Dealing with high-dimensional posterior covariance.

2

Why?

3

4

5

6

7

8

Q: What can we infer about the parameters inside the
domain, just from displacement observations on the

outside?

Q: Which parameters am I most uncertain about?

9

Bayesian Approach
• Deterministic event - totally predictable.

• Random event - unpredictable.

• Bayesian approach to inverse problems:

• The world is unpredictable.

• Consider everything as a random variable.

10

Terminology

• Observation. Displacements.

• Parameter. Material property.

• Parameter-to-observable map. Finite deformation
hyperelasticity.

11

y

x

f (x)

Bayes Theorem

�posterior(x | y) � �likelihood(y | x)�prior(x)

Goal: Given the observations, find the posterior
distribution of the unknown parameters.

12

Three step plan

1. Construct the prior.!

2. Construct the likelihood.

3. Calculate/explore the posterior.

13

Constructing a prior
(with DOLFIN)

Must reflect our subjective belief about the unknown
parameter.

Difficulty:!
How to transfer qualitative information to quantitative.

14

!
Simple example involving a PDE solve: Smoothing Prior

https://bitbucket.org/snippets/jackhale/rk6xA !

15

https://bitbucket.org/snippets/jackhale/rk6xA

Reminder…
Let x0 � Rn and � � Rn�n be a symmetric positive definite matrix. A multivariate Gaussian

random variable X with mean x0 and covariance � is a random variable with the probability

density:

�(x) =

�
1

2�|�|

�

exp
�
�
1

2
(x � x0)

T��1(x � x0)
�
.

When X follows a multivariate Gaussian, we use the following notation:

X � N (x0,�).

16

17

Qualitative: I think my parameter is smooth and is
probably around zero at the boundary.

Imagine a parameter related to a physical quantity in
1-dimensional space. Often, the value of parameter at
a point is related to the value of the parameters next
to it.

Xi =
1

2
(Xi−1 +Xi+1) +Wj

With:

W = N (0, γ2I)

AX = W

18

19

mesh = UnitIntervalMesh(160)

V = FunctionSpace(mesh, “CG”, 1)

u = TrialFunction(V)

v = TestFunction(V)

...

a = (1.0/2.0)*h*inner(grad(u), grad(v))*dx

class W(Expression):
 def eval(self, value, x):

 value[0] = np.random.normal()

...

W = interpolate(W(), V)

A = assemble(A)

...

Boundary conditions

1. Dirichlet: set to zero.

2. Extend definition of Laplacian outside domain.

20

21

values = np.array([1.0, -0.5], dtype=np.float_)
rows = np.array([0], dtype=np.uintp)
cols = np.array([0, 1], \
 dtype=np.uintp) A.setrow(0, cols, values)
cols = np.array([V.dim() - 1, V.dim() - 2], \
 dtype=np.uintp)
A.setrow(V.dim() - 1, cols, values)
A.apply("insert")

22

Std(X,X) =
√
diag(γ2A−1A−T)

23

Std(X,X) =
√
diag(γ2A−1A−T)

24

Exploring the posterior

25

26

xMAP = argmax
x∈Rn

πposterior(x | y)

xMAP

xCM

cov(x | y)

xCM =
∫

Rn
xπposterior(x | y) dx

xMAP

xCM

cov(x | y)

27

28

cov(x | y) =
∫

Rn
(x − xcm)(x − xcm)Tπposterior(x | y) dx ∈ Rn×n

xMAP

xCM

cov(x | y)

OK, but how can we use
dolfin-adjoint to do this?

Aim: Connect Bayesian approach to classical
optimisation techniques.

29

�posterior(x | y) � �likelihood(y | x)�prior(x)

xMAP = argmax
x∈Rn

πposterior(x | y)

xMAP

xCM

cov(x | y)

30

Assumptions
1. I think my parameter is Gaussian (prior).

2. My parameter to observable map is linear and my
noise model is Gaussian.

X ∼ N (x0,Γprior), X ∈ Rn

Y = AX + E, Y ∈ Rm,A ∈ Rm×n

E ∼ N (0,Γnoise), Y ∈ Rm
31

Plug it in…

�posterior(x | y) � �likelihood(y | x)�prior(x)

32

πposterior(x |y) ∝ exp
(
−
1

2
(y − Ax)TΓ−1noise(y − Ax)

)
×exp

(
−
1

2
(x − x0)TΓ−1prior(x − x0)

)

xMAP = argmax
x∈Rn

πposterior(x | y)

� ln�posterior(x | y) =
1

2
(y � Ax)T��1noise(y � Ax) +

1

2
(x � x0)

T��1prior(x � x0)

=
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

xMAP = argmin
x∈Rn

{
− lnπposterior(x | y)

}

33

πposterior(x |y) ∝ exp
(
−
1

2
(y − Ax)TΓ−1noise(y − Ax)

)
×exp

(
−
1

2
(x − x0)TΓ−1prior(x − x0)

)

Optimise

g(xMAP) := �x

�
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

� �����
x=xmap

= AT��1noise(y � Axmap) + ��1prior(xmap � x0)

= 0

xMAP =
(
Γ−1prior − A

TΓ−1noiseA
)−1
(ATΓnoisey + Γpriorx0)

34

xMAP =
(
Γ−1prior − A

TΓ−1noiseA
)−1
(ATΓnoisey + Γpriorx0)

H := ∇xg = Γ−1prior − A
TΓ−1noiseA

35

8.1 Basics 8 GAUSSIANS

then

p(xa|xb) = N
xa(µ̂a, ⌃̂a)

n µ̂a = µa +⌃c⌃
�1

b (xb � µb)
⌃̂a = ⌃a �⌃c⌃

�1

b ⌃T
c

(353)

p(xb|xa) = N
xb
(µ̂b, ⌃̂b)

n µ̂b = µb +⌃T
c ⌃

�1

a (xa � µa)
⌃̂b = ⌃b �⌃T

c ⌃
�1

a ⌃c
(354)

Note, that the covariance matrices are the Schur complement of the block ma-
trix, see 9.1.5 for details.

8.1.4 Linear combination

Assume x ⇠ N (mx,⌃x) and y ⇠ N (my,⌃y) then

Ax+By + c ⇠ N (Amx +Bmy + c,A⌃xA
T +B⌃yB

T) (355)

8.1.5 Rearranging Means

N
Ax

[m,⌃] =

p
det(2⇡(AT⌃�1A)�1)p

det(2⇡⌃)
N

x

[A�1m, (AT⌃�1A)�1] (356)

If A is square and invertible, it simplifies to

N
Ax

[m,⌃] =
1

| det(A)|Nx

[A�1m, (AT⌃�1A)�1] (357)

8.1.6 Rearranging into squared form

If A is symmetric, then

�1

2
xTAx+ bTx = �1

2
(x�A�1b)TA(x�A�1b) +

1

2
bTA�1b

�1

2
Tr(XTAX) + Tr(BTX) = �1

2
Tr[(X�A�1B)TA(X�A�1B)] +

1

2
Tr(BTA�1B)

8.1.7 Sum of two squared forms

In vector formulation (assuming ⌃
1

,⌃
2

are symmetric)

�1

2
(x�m

1

)T⌃�1

1

(x�m
1

) (358)

�1

2
(x�m

2

)T⌃�1

2

(x�m
2

) (359)

= �1

2
(x�mc)

T⌃�1

c (x�mc) + C (360)

⌃�1

c = ⌃�1

1

+⌃�1

2

(361)

mc = (⌃�1

1

+⌃�1

2

)�1(⌃�1

1

m
1

+⌃�1

2

m
2

) (362)

C =
1

2
(mT

1

⌃�1

1

+mT
2

⌃�1

2

)(⌃�1

1

+⌃�1

2

)�1(⌃�1

1

m
1

+⌃�1

2

m
2

)(363)

�1

2

⇣
mT

1

⌃�1

1

m
1

+mT
2

⌃�1

2

m
2

⌘
(364)

Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 41

� ln�posterior(x | y) =
1

2
(y � Ax)T��1noise(y � Ax) +

1

2
(x � x0)

T��1prior(x � x0)

=
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

36

37

� ln�posterior(x | y) =
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

=
1

2
�x � xMAP�H

πposterior ∼ N (xMAP,H−1)

Back to the problem…

38

39

Find xMAP that satisfies:

min
x

1

2
�y � f (x)�2

��1noise
+

1

2
�x � x0�2��1prior

,

where the parameter-to-observable map f : Rn � Rm is is defined such that:

F (f (x), x) = Dv

�

�
�(f (x), x) dx = 0 �v � H1

D(�), x � L2(�),

where

�(u, x) =
�

�
�(u, x) dx �

�

�
t · u ds,

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�u,

C = FTF,

IC = tr(C),

J = detF.

from dolfin import *
mesh = UnitSquareMesh(32, 32) !
U = VectorFunctionSpace(mesh, "CG", 1)
V = FunctionSpace(mesh, "CG", 1)
solution
u = Function(U)
test functions
v = TestFunction(U)
incremental solution
du = TrialFunction(U)
mu = interpolate(Constant(1.0), V)
lmbda = interpolate(Constant(100.0), V) !
dims = mesh.type().dim()
I = Identity(dims)
F = I + grad(u)
C = F.T*F
J = det(F)
Ic = tr(C) !
dims = mesh.type().dim()
I = Identity(dims)
F = I + grad(u)
C = F.T*F
J = det(F)
Ic = tr(C)

phi = (mu/2.0)*(Ic - dims) - mu*ln(J) + (lmbda/
2.0)*(ln(J))**2
Pi = phi*dx
gateux derivative with respect to u in direction v
F = derivative(Pi, u, v)
and with respect to u in direction du
J = derivative(F, u, du) !
u_h = Function(U)
F_h = replace(F, {u: u_h})
J_h = replace(J, {u: u_h})
solve(F_h == 0, u_h, bcs, J=J_h)

41

u_obs << File(“observations.xdmf”)

J = Functional(inner(u - u_obs, u - u_obs)*dx + \

 inner(mu, mu))

m = Control(mu)

J_hat = ReducedFunctional(J, m)

...

dJdm = Jhat.derivative()[0]

H = Jhat.hessian(dm)[0]

Wait a second…

42

xMAP

xCM

cov(x | y)

43

xMAP

xCM

cov(x | y)

H−1(xMAP)

44

πposterior ∼ N (xMAP,H−1)

πapproxposterior ∼ N (xMAP,H
−1(xMAP))

xMAP

xCM

cov(x | y)

H−1(xMAP)

Solving

45

Strategy: Use hooks in dolfin-adjoint to solve with
petsc4py-based contexts.

• Parameter-to-observable map. Newton-Krylov
method.

• Inner solve with GAMG preconditioned GMRES
(KSP) with near-null-space set.

• Newton with second-order backtracking line
search (SNES).

46

47

•20% extension test, 16 Core Xeon, 1.12 million
cells, ~29 secs to residual of 1E-10.

Colin27 brain atlas

48

• MAP estimator.

• Bound constrained Quasi-Newton BLMVM with
More-Thuente line search (TAO).

• No Riesz map.

49

• Principal Component Analysis.

• Trailing: BLOPEX Locally Optimal Block
Preconditioned Gradient method (SLEPc/
BLOPEX).

• Leading: Krylov Schur (SLEPc).

50

51

52

53

54

Back to uncertainty
quantification…

55

56

57

58

Q: What can we infer about the parameters inside the
domain, just from displacement observations on the

outside?

Q: Which parameters am I most uncertain about?

59

πposterior ∼ N (xMAP,H−1)

πapproxposterior ∼ N (xMAP,H
−1(xMAP))

xMAP

xCM

cov(x | y)

H−1(xMAP)

60

H ∈ Rn×n

Big Dense

Expensive to calculate Only have action

61

H = QΛQT

Γpost = H
−1 = QTΛ−1Q

62 Wikipedia Commons

Trailing Eigenvector

63

Direction in parameter space least constrained by the
observations

64

xmap

65

66

Leading Eigenvectors

67

Direction in parameter space most constrained by the
observations

68

69

70

71

72

73

Matches trends from Flath et al. p424 for linear parameter to observable maps.

Γprior

Γpost

74

Full Hessian.
4000+ actions.

2000 to calculate H. 2000 to extract.

Partial Hessian.
501 actions for 292 for leading.

209 to calculate H. 292 to extract.

Huge savings in computational cost.
Scales with model dimension.
Implement low-rank update.

Summary
• We are developing methods to access uncertainty in

the recovered parameters in hyperelastic materials.

• This is done within the framework of Bayesian
inversion.

• dolfin-adjoint makes assembling the equations
relatively easy, solving them is tougher.

• Next steps: efficient low-rank updates, Hamiltonian
MCMC.

75

