Article (Périodiques scientifiques)
A novel cost-sensitive framework for customer churn predictive modeling
CORREA BAHNSEN, Alejandro; AOUADA, Djamila; OTTERSTEN, Björn
2015In Decision Analytics, 2 (5)
Peer reviewed
 

Documents


Texte intégral
A novel cost-sensitive framework for customer churn predictive modeling_published.pdf
Postprint Éditeur (1.2 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Predictive Modeling; Classification; Cost-sensitive; Customer lifetime value
Résumé :
[en] Customer churn predictive modeling deals with predicting the probability of a customer defecting using historical, behavioral and socio-economical information. This tool is of great benefit to subscription based companies allowing them to maximize the results of retention campaigns. The problem of churn predictive modeling has been widely studied by the data mining and machine learning communities. It is usually tackled by using classification algorithms in order to learn the different patterns of both the churners and non-churners. Nevertheless, current state-of-the-art classification algorithms are not well aligned with commercial goals, in the sense that, the models miss to include the real financial costs and benefits during the training and evaluation phases. In the case of churn, evaluating a model based on a traditional measure such as accuracy or predictive power, does not yield to the best results when measured by the actual financial cost, ie. investment per subscriber on a loyalty campaign and the financial impact of failing to detect a real churner versus wrongly predicting a non-churner as a churner. In this paper, we present a new cost-sensitive framework for customer churn predictive modeling. First we propose a new financial based measure for evaluating the effectiveness of a churn campaign taking into account the available portfolio of offers, their individual financial cost and probability of offer acceptance depending on the customer profile. Then, using a real-world churn dataset we compare different cost-insensitive and cost-sensitive classification algorithms and measure their effectiveness based on their predictive power and also the cost optimization. The results show that using a cost-sensitive approach yields to an increase in cost savings of up to 26.4%
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CORREA BAHNSEN, Alejandro ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A novel cost-sensitive framework for customer churn predictive modeling
Date de publication/diffusion :
13 juin 2015
Titre du périodique :
Decision Analytics
Maison d'édition :
SpringerOpen
Volume/Tome :
2
Fascicule/Saison :
5
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 06 mai 2015

Statistiques


Nombre de vues
256 (dont 6 Unilu)
Nombre de téléchargements
522 (dont 4 Unilu)

OpenCitations
 
17
citations OpenAlex
 
50

Bibliographie


Publications similaires



Contacter ORBilu