[en] We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information—an area which we expect will become increasingly important for metabolic engineering—and present recent developments in the field of metabolic and regulatory integration.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Experimental Neurobiology (Balling Group)
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
SIMEONIDIS, Vangelis ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Price, Nathan; Institute for Systems Biology - ISB
External co-authors :
yes
Language :
English
Title :
Genome-scale modeling for metabolic engineering
Publication date :
13 January 2015
Journal title :
Journal of Industrial Microbiology and Biotechnology
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Similar publications
Sorry the service is unavailable at the moment. Please try again later.