MSM varactor diodes based on AlGaN/GaN/SiC HEMT layer structures
English
Marso, Michel[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
Bernát, J.[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
Javorka, P.[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
Fox, A.[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
Wolter, M.[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
Kordoš, P.[Institute of Thin Films and Interfaces (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Research Centre Jülich, 52425 Jülich, Germany]
2004
Proc. 5th Intern. Conf. Advanced Semicon. Dev. & Microsystems ASDAM’04
[en] The influence of a carrier supply layer on the electrical properties of MSM diodes based on AlGaN/GaN HEMT layer structures is investigated. The voltage dependence of the Schottky contact capacitance allows the use of the device as varactor diode with CMAX / CMIN ratios up to 17, tuneable by contact geometry. The carrier supply doping determines the sheet carrier density of the twodimensional electron gas channel, which is responsible for the transition voltage and the series resistance of the MSM diode. A device based on the highest doped layer structure shows a cutoff frequency as high as 65 GHz.