[en] This paper uses quadratic surface Lyapunov functions to efficiently check if a double integrator in feedback with a saturation nonlinearity has L2-gain less than gamma > 0. We show that for many of such systems, the L2-gain is non-conservative in the sense that they are approximately equal to the low erbound obtained by replacing the saturation with a constant gain of 1. These results allow the use of classical analysis tools like mu -analysis or IQCs to analyze systems with double integrators and saturations, including servo systems like some mechanical systems, satellites, hard-disks, CD players, etc.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Langue du document :
Anglais
Titre :
L2-gain of double integrators with saturation nonlinearity
Blondel, V., E. Sontag, M. Vidyasagar and J. Willems (1999). Open Problems in Mathematical Systems and Control Theory. Springer-Verlag, London. Problem 36.
Gonçalves, Jorge M. (2001). L2-gain of double integrators with saturation nonlinearity. Technical Report CIT-CDS 01-011, Caltech.
Gonçalves' web page, Jorge M. (2001). http://www.cds.caltech.edu/~jmg/.
Jönsson, Ulf and Alexandre Megretski (2000). The Zames Falb IQC for systems with integrators. IEEE Transactions on Automatic Control 45(3), 560-565.
Kao, Chung-Yao (2001). On the L2-gain of a double integrator with feedback loop saturation nonlinearity. IEEE Transactions on Automatic Control 46(3), 501-504.
Liu, W., Y. Chitour and E. Sontag (1996). On finite-gain stabilizability of linear systems subject to input saturation. SIAM Journal on Control and Optimization 34(4), 1190-1219.
Megretski, Alexandre (2001). New IQC for quasi-concave nonlinearities. To appear in the International Journal of Robust Nonlinear Control.