Decentralised network consensus; Minimum finite-time consensus; Single node observation; Laplacian matrix; Graph theory
Résumé :
[en] We consider the discrete-time dynamics of a network of agents that exchange information according to
a nearest-neighbour protocol under which all agents are guaranteed to reach consensus asymptotically.
We present a fully decentralised algorithm that allows any agent to compute the final consensus value of
the whole network in finite time using the minimum number of successive values of its own state history.
We show that the minimum number of steps is related to a Jordan block decomposition of the network
dynamics, and present an algorithm to compute the final consensus value in the minimum number of
steps by checking a rank condition of a Hankel matrix of local observations. Furthermore, we prove that
the minimum number of steps is related to graph theoretical notions that can be directly computed from
the Laplacian matrix of the graph and from the minimum external equitable partition.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Yuan, Ye
Stan, Guy-Bart
Shi, Ling
Barahona, Mauricio
GONCALVES, Jorge ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Langue du document :
Anglais
Titre :
Decentralised minimum-time consensus
Date de publication/diffusion :
mai 2013
Titre du périodique :
Automatica
ISSN :
0005-1098
Maison d'édition :
Pergamon Press - An Imprint of Elsevier Science, Oxford, Royaume-Uni