Article (Scientific journals)
Discrete versions of the transport equation and the Shepp-Olkin conjecture
HILLION, Erwan; Johnson, Oliver
2016In Annals of Probability, 44 (1), p. 276-306
Peer Reviewed verified by ORBi
 

Files


Full Text
HillionJohnson2015.pdf
Publisher postprint (375.75 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
entropy; transportation of measures; Bernoulli sums
Abstract :
[en] We introduce a framework to consider transport problems for integer-valued random variables. We introduce weighting coeffcients which allow us to characterise transport problems in a gradient now setting, and form the basis of our introduction of a discrete version of the Benamou--Brenier formula. Further, we use these coeffcients to state a new form of weighted log-concavity. These results are applied to prove the monotone case of the Shepp--Olkin entropy concavity conjecture.
Research center :
University of Bristol
Disciplines :
Mathematics
Author, co-author :
HILLION, Erwan ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Johnson, Oliver
External co-authors :
yes
Language :
English
Title :
Discrete versions of the transport equation and the Shepp-Olkin conjecture
Publication date :
2016
Journal title :
Annals of Probability
ISSN :
0091-1798
eISSN :
2168-894X
Publisher :
Institute of Mathematical Statistics, Beachwood, United States - Ohio
Volume :
44
Issue :
1
Pages :
276-306
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
EPSRC grant, Information Geometry of Graphs, reference EP/I009450/1.
Available on ORBilu :
since 26 January 2015

Statistics


Number of views
103 (9 by Unilu)
Number of downloads
168 (2 by Unilu)

Scopus citations®
 
5
Scopus citations®
without self-citations
2
OpenAlex citations
 
9
WoS citations
 
7

Bibliography


Similar publications



Contact ORBilu