entropy; transportation of measures; Bernoulli sums
Résumé :
[en] We introduce a framework to consider transport problems for integer-valued random variables. We introduce weighting coeffcients which allow us to characterise transport problems in a gradient now setting, and form the basis of our introduction of a discrete version of the Benamou--Brenier formula. Further, we use these coeffcients to state a new form of weighted log-concavity. These results are applied to prove the monotone case of the Shepp--Olkin entropy concavity conjecture.
Centre de recherche :
University of Bristol
Disciplines :
Mathématiques
Auteur, co-auteur :
HILLION, Erwan ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Johnson, Oliver
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Discrete versions of the transport equation and the Shepp-Olkin conjecture
Date de publication/diffusion :
2016
Titre du périodique :
Annals of Probability
ISSN :
0091-1798
eISSN :
2168-894X
Maison d'édition :
Institute of Mathematical Statistics, Beachwood, Etats-Unis - Ohio