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Abstract

We introduce a framework to consider transport problems for integer-valued random
variables. We introduce weighting coefficients which allow us to characterise trans-
port problems in a gradient flow setting, and form the basis of our introduction of a
discrete version of the Benamou—Brenier formula. Further, we use these coefficients
to state a new form of weighted log-concavity. These results are applied to prove the
monotone case of the Shepp—Olkin entropy concavity conjecture.
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1 Introduction

In recent years, there has been intensive study of relationships between entropy and prob-
abilistic inequalities. Since the work of Monge in the eighteenth century, it has been
understood how one probability measure on R can be smoothly transformed into another
along a path minimising an appropriate cost. As described for example in [34, 35], use of
the quadratic cost function induces the quadratic Wasserstein distance W5 which, using
the Benamou—Brenier formula [5, 6], can be understood in terms of velocity fields arising
in gradient models of the kind discussed in [2, 8, 19]. In such models, concavity of en-
tropy along the geodesic plays a central role, giving proofs of inequalities such as HWI,
log-Sobolev and transport inequalities, see for example in [9]. A key role is played by
log-concavity of the underlying measures, and the Ricci curvature of the underlying metric
space (see for example [22, 31, 32])

However, this work has almost exclusively focused on continuous random variables,
taking values in R?, or more generally on Riemannian manifolds satisfying a curvature
condition. In this paper, we propose a framework for considering similar problems for
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integer-valued random variables. We show how many natural models of transportation of
discrete random variables can be considered as gradient models, and propose a discrete
version of the Benamou—Brenier formula. As an example of the insights gained by this
approach, we give a proof of a significant new case of the Shepp—Olkin concavity conjecture
[30], which has remained unresolved for over 30 years.

Shepp and Olkin considered sums of n independent Bernoulli variables (referred to
as Bernoulli sums throughout this article), with parameters py,...p, respectively, where
pi € [0,1], and n remains fixed. This sum has a probability distribution (fx)k=01.. ., and
Shepp and Olkin conjectured [30] that its entropy is a concave function of its parameters.

Conjecture 1.1 ([30]). Consider the entropy of (fi)k=o1,. n, defined by

H(pb ce 7pn) = ka log<fk)7
k=0

where by convention 01log(0) = 0. If p1,...,pn : [0,1] — [0,1] are affine functions, then
H:[0,1] >R, t— H(pi(t),...,pa(t))
is a concave function in t.

We emphasise that Conjecture 1.1 refers to concavity of entropy in the parameter
space. This should be contrasted with concavity in the space of mass functions themselves.
The result that the entropy of mixtures of mass functions fi(a) := (1 — «) ,ﬁ” +a f,£2) is
convex in « is standard (see for example [10, Theorem 2.7.3]). Indeed duality between this
parameter representation and the distribution space is exploited in Information Geometry
(see for example [1]), where the concavity of entropy also plays a central role.

Although the Shepp—Olkin Conjecture 1.1 remains open, we briefly describe the main
cases which had previously been resolved. First, Shepp and Olkin’s original paper [30]
showed that the entropy is a Schur-concave function, stated that Conjecture 1.1 holds for
n = 2,3 and proved it for interpolation between two binomials, when p;(t) =t for all 7.

Second, Theorem 2 of Yu and Johnson [38] proves concavity of the entropy of H(7;X +
T,_,Y), for X and Y satisfying the ultra log-concavity property (see Definition 3.11 below),
where T} represents Rényi’s thinning operation [28], see Equation (35) below. As remarked
in [38, Corollary 1], this resolves the special case of Conjecture 1.1 where each parameter
is either p;(t) = pi(0)(1 — 1) or p;(t) = pi(1)t.

Third, Theorem 1.1 of Hillion [14] resolves the case where for each i, either p;(t) = p;(0)
for all ¢ or p;(t) =t (the translation case of Example 3.10 below).

In this article, given a family of affine functions p;(t),...p,(t), we consider the asso-
ciated Bernoulli sum (f(t))k=01.. .~ as a function of the spatial variable k£ and the time
variable . We often omit the explicit dependence of f; on t. Throughout this article
we restrict our attention to the special case that p, > 0 for every i € {1,...n}, so the
random variables f(t) satisfy a stochastic ordering property. We write the left derivative
Vifi = fr — fr_1, and write V, = (V1)2 for the map taking Vofy = fr — 2fr_1 + fr_o-
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The paper is organised as follows. In Section 2 we review properties of continuous
gradient flow models, and develop a framework to prove concavity of entropy. We introduce
and discuss the Benamou—Brenier formula, Equation (11).

In Section 3 we introduce a formalism to describe interpolation of discrete probability
mass functions fj, motivated by properties of the binomial mass functions. In Definition
3.2, we propose a discrete analogue of the Benamou—Brenier formula. A key role is played
by our introduction of a family of functions ay(t) which are used to generate mixtures of fj
and frr1. We write A for the set of measurable functions a(t) = (ap(t), a1(t), ..., a,(t)),
where ap(t) =0 and «,(t) = 1, and 0 < oy (t) < 1 for all £ and t.

Our formula of Benamou—Brenier type motivates the following definition:

Definition 1.2. We say that a family of probability mass functions fi(t) supported in

{0,...,n} is a constant velocity path, if for some v and for some family of probability mass
functions g,ga)(t) supported in {0,...,n — 1}, it satisfies a modified transport equation
%(t) = -V, (g,ga)(t)) fork=0,1,...,n, (1)
where for some a(t) € A,
0O = () fosa (8) + (1 — ax) fult)  fork=0,1,...,n—1. 2)

If fi(t) satisfies a modified transport equation, we write h for the function (not necessarily
a probability mass function) satisfying a second-order modified transport equation

0 fi
ot?

An explicit expression for hy is given in Equation (44).

(t) =v°Vy (hy), fork=0,1,...,n. (3)

In Section 3.3 we discuss the constant velocity path property. Lemma 3.5 shows that any
such representation is unique, and we give some examples which lie within this framework.
In Section 4, by examining the coefficients a € A associated with a constant velocity path
fr(t), called optimal coefficients for fy(t), we give sufficient conditions for the concavity of
entropy along the interpolation. To be specific, we introduce the following three conditions:

Condition 1 (k-MON). Given t, we say that the oy (t) are k-monotone at t if
a(t) < agyi(t)  forallk=0,...,n—1. (4)
Condition 2 (:-MON). Given t, we say that the ay(t) are t-monotone at t if

%(ﬂzo forallk=0,...,n. (5)

Condition 3 (GLC). We say that probability mass function fy supported on {0,1,...,n}
is a-generalized log-concave at t, denoted by GLC(a(t)), if for allk =0,...,n — 2,

GLC (@) (t) == s ()(1 = a1 (1)) fiia (t) — o () (1 — () fi(t) fraa(t) > 0. (6)



In Section 4 we prove the following theorem:

Theorem 1.3. Consider a constant velocity path fi(t) of probability mass functions and
associated optimal o(t). If Conditions 1, 2 and 3 hold for a given t = t*, then the entropy
H(f(t)) is concave in t at t = t*.

Example 1.4. Theorem 1.3 gives a new perspective on Shepp and Olkin’s proof [30] that
the entropy of binomial Bin(n,t) random variables (with probability mass function fi(t) =
()t (1 =) for k=0,...,n) is concave in t. In this case, Example 3.1 shows that the
optimal ax(t) = k/n, so the k-monotone and t-monotone conditions, Conditions 1 and 2
are clear. Further, ax(t) = k/n means that the GLC Condition 3 reduces to the ultra log-
concavity of order n of Pemantle [27] and Liggett [21] (see Definition 3.11), which clearly
holds with equality in this case. In fact, in the more general ‘symmetric case’ where p;; does
not depend on i, Remark 5.8 shows ay(t) = k/n, and a similar argument applies.

Finally, we use this formalism to consider the Shepp—Olkin Conjecture 1.1, in the
‘monotone’ setting p; > 0 for all 7. In Section 5, we show that in the monotone case,
the Shepp—Olkin interpolation is a constant velocity path in the sense of Definition 1.2.
In Proposition 5.2 we show that the k-monotone Condition 1 is automatically satisfied
in this case. Similarly Proposition 5.4 shows that GLC, Condition 3, also holds for all
Shepp—Olkin interpolations in this context.

Unfortunately ¢-monotonicity, Condition 2, does not hold for all (monotone) Shepp—
Olkin interpolations. However, Theorem 4.4 weakens the assumptions of Theorem 1.3, by
proving that entropy remains concave if we replace Condition 2 by Condition 4, which is
less restrictive, although less transparent in nature. We complete the proof of the monotone
Shepp—Olkin conjecture by showing in Lemma 6.2 that Condition 4 is satisfied in this case.
The proof uses properties of Bernoulli sum mass functions, including a ‘cubic’ inequality
Theorem A.2. In Section 6, we therefore prove the main result of this paper:

Theorem 1.5 (Monotone Shepp-Olkin). Consider the entropy of (fi)k=0.1

y Ly

n, defined by

H(pi,....pn) ==~ _ fulog(fr).

k=0
If p1,...,pn 2 [0,1] = [0,1] are affine functions with p; > 0 for all i, then the function

H:[0,1] 3R, t— H(pi(t),...,pa(t))

18 concave in t.

2 Geodesics for continuous random variables

2.1 General framework for concavity of entropy

In Section 2 we restate results concerning entropy and geodesics for random variables on
R, using the following differential equation framework, where the form of (7) motivates
Equations (1) and (3):



Theorem 2.1. Let (f;(x ))te 1] be a smooth family of positive probability densities on R,

such that the entropy H(t) := — [ fi(x)log(fi(x))dx exists for all t. Consider the families
of functions (g(x ))te[o,l] and (hy(x ) )iejo,1) which satisfy
ofi(x)  Ogi(x) O fulx)  0*hy(x)

(7)

ot Oz oz a2
Under technical conditions, such as those listed in Remark 2.2, the entropy H(t) satisfies

H') = ‘/R(ht(x)‘gjﬁt(&?)aa;(logft s = [ 56 (5 <ftg>)2d“'<8)

Proof. The two conditions listed in part (a) of Remark 2.2 are those required under Leib-
niz’s rule for differentiation under the integral sign, yielding

w0y = = [ D aronao [ s (M) o
- - [ G eutsone [z (0 0

Here, by part (b) of Remark 2.2 g,(z) vanishes at © = 400, meaning that the term

R afét dr = 0. Using the quotient rule we can write the second term in Equation (9) as

e <agatf))2 o
L g () (3 )
of, x)? A x 0
-[(52) 565 () v (3 (53)) o
since we recognise the term in square brackets as a perfect derivative, and integrate by

parts. The remaining conditions listed in Remark 2.2(b) justify the necessary integrations
by parts to prove the Theorem. O

Remark 2.2. We assume for example that the following technical conditions hold:

(a) there exist integrable 04(x),0p(x) such that for all t,x:

Ig(x) 0%hy ()

280 1+ og(fa))| < 0a(0) ant |5 o) + (PA ) ) < (o)

(b) foreacht € [0,1], functions g;(x), 8}3;:6) log(fi(z)) , }}:((g %ﬂ(f) and (?ﬁg;) 8]:;5;)

vanish at r = £0o.



Section 2 aims to motivate results in the case where all random variables have support
on a finite set, so the required differentiation formulas are automatic. For this reason, we
do not discuss the question of verification of the technical conditions of Remark 2.2.

In some sense, an extreme example for which we can apply Theorem 2.1 is the following:

Example 2.3. Consider the translation of probability density fo, where fi(x) = fo(x —vt)
for some constant velocity v > 0. It is then easy to see that g:(x) = vf(x) and hy(z) =
v2fi(x). Theorem 2.1 then confirms shift invariance makes the entropy H(t) of f; constant.

2.2 Benamou—Brenier formula

The study of geodesics interpolating between continuous probability densities exploits prop-
erties of the quadratic Wasserstein distance Wy, which (see [5, 6, 2]) has a variational char-
acterisation involving velocity fields, given by the Benamou-Brenier formula (11) below.

Definition 2.4. Consider fixed smooth distribution functions Fy and Fy. Write Pr(Fy, F1)
for the set of probability densities fi(x), with corresponding distribution functions Fy(x) =
[° fily)dy satisfying constraints Fy(x)|—o = Fy(z) and Fy(z)|=y = Fi(x). Then given
any sequence f; € Pr(Fo, F1), we refer to a function v, as a velocity field if it satisfies

0 0
aft(x) +tos (vi() fe(w)) = 0. (10)

Ambrosio, Gigli and Savaré [2, Section 8] give a careful analysis of conditions under
which this type of continuity equation holds. They consider (see [2, Definition 1.1.1]) the
class of absolutely continuous curves p; € P,(X), the set of probability measures with finite
pth moment on separable Hilbert space X. Theorem 8.3.1 of [2] shows that for p > 1, a
version of Equation (10) holds for y; in this class, in fact:

0
atMt + V- (o) =0,

in the sense of distributions (using the class of smooth cylindrical test functions).

Further, Theorem 8.3.1 of [2] shows that under these conditions the resulting velocity
field has LP(p;) norm dominated by the metric derivative |i'|(t) (as defined in [2, Equation
(1.1.3)]). Using properties of so-called length spaces, this allows the following formula, first
proved by Benamou and Brenier [5, 6] for probability measures on X = R?, to be recovered
for separable Hilbert spaces X. For comparison purposes, we state this Benamou-Brenier
formula for the case of X = R:

Theorem 2.5 ([5, 6]). Using the notation of Definition 2.4 above, the quadratic Wasser-
stein distance is given by

2 —
W3 (Fo, F1) = fteP;{nlgoFl/ (/ fir(w)ve(y dy) dt (11)

N fteP;gr(llgo,Fl)/O (/_Oo (a;;t( )) %dy) dt. (12)



Corollary 2.6. If (ft)icpo,1] is a solution to the minimization problem (11) then, assuming
the technical conditions of Remark 2.2 hold, we can write

H'(f,) = /ft (—vt ))zdxgo (13)

and the inner integral of (11), [ fu(x)v(x)*dx, is constant in t.

Proof. 1t is shown in [5, Equation (1.14)] that if (f;)¢cpo,1] is a solution to the minimization
problem (11) then its associated velocity field v,(z) is, at least formally, a solution to the
equation:

Ov(w) B Ovy(x)

5 = (o). (14)
Taking a further time derivative of (10), and using (14), we deduce a second-order PDE:
- 2 (Gr@ne +u@ @)
= 2 (M s +ue) 2 @)
— 5— (v(2)? fu()) - (15)

(assuming the ¢ and x derivatives can be exchanged). In the notation of Theorem 2.1, we
can rewrite equations (10) and (15) in the form g;(x) = vi(z) fi(x) and hy(z) = vi(z)%fi(x).
This makes a clear analogy with the translation case, Example 2.3, and Equation (13) fol-
lows by a straightforward application of Theorem 2.1. Similar calculations using Equation
(14) show that 2 (fi(z)vi(2)?) = 2 (fi(z)vi(2)?), and the result follows. O

This result can be seen as a particular case of results coming from Sturm-Lott-Villani
theory [22, 31, 32]. This theory establishes links between the behaviour of the entropy
functional along Wasserstein Ws-geodesics on a given measured length space and bounds
on the Ricci curvature on this space. In particular, a Riemannian manifold (M, g) sat-
isfies Ric > 0, where Ric is the Ricci curvature tensor, if and only if for every abso-
lutely continuous Wasserstein W-geodesic (ju)icpo,1) := (fidvol)icpo,] the entropy function
H(t) := — [, felog(fi)dvol is concave in t. This equivalence is used to generalise the
definition of Ricci curvature bounds from the Riemannian framework to the framework
of measured length spaces, i.e. metric spaces (X, d) for which the distance d(z,y) is the
infimum of lengths of curves joining = to y.

This theory can be developed to use transportation arguments to prove probabilistic
inequalities involving entropy, such as log-Sobolev, transport and HWI inequalities. For
example, Cordero—Erausquin [9, Corollary 1,2,3] gives simple proofs of these inequalities,
under the condition that relative density f/¢1/. is log-concave (in the continuous sense),
where ¢, . is a normal density with variance 1/c. This log-concavity condition is known to
imply the Bakry-Emery condition [4] (see for example [9, 3]), which is natural in this con-
text. GLC, Condition 3, is introduced as a discrete version of the log-concavity condition.
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2.3 Perturbed translations

Theorem 2.7. Let (f;(x))ico,1) be a smooth family of positive probability densities on R
and (9:())iejo,1) be defined by equation (7). If there exists a constant v and a non-decreasing
function a(t) such that

(z) = fi2) + a(t) - () (16)

then, assuming the technical conditions of Remark 2.2 hold, the entropy H(t) of fi is a
concave function of t.

Proof. Using the facts that 2 f,(z) = —Z g;(x), and hence %ft(:c) = —%gt(x), we take
a derivative of Equation (16) to compute:

Grole) = —vil (0hl) +aO T ) + a5 (o)

82

~alt) 55 (wfita) + ol A0 )

so the family of functions h(x) defined by equation (7) is equal to:

() = 07 ) + 200(0) - o) + a(0) g ) — (1)) (17)

It is then easy to deduce that

() — 2 _ 2 ) (a— log<ft<x>>) A fila). a8)

fi(z) oz
Since in this case 2 (g,(z)/ fi(x)) = oz(t)a—;2 (log fi(x))?, Theorem 2.1 gives that:

) 82 2 o 2

1) = ~20(0° [ (55 008h(e)) file) = a(t) [ (5hbos(hla))) fla), (19
R Ox R ox

which shows the concavity of H(t). O
Among the consequences of Theorem 2.7 there are the particular cases where «(t) = 0,
which is the translation case of Example 2.3, and the case where v =0 and a(t) = —cis a

ofi(x) 0 fe(x)

constant, in which case f is a solution to the heat equation =5~ = c=55~.
Theorem 2.7 can be used to study the entropy of an approximation of a Bernoulli sum
by a Gaussian distribution of the same mean and variance. This motivates the Shepp—Olkin

conjecture, due to the following result:

Theorem 2.8. Let py,...,p, : [0,1] = [0, 1] be affine functions and let pu(t) == ¢ | pi(t)
and V(t) := > " pi(t)(1 — pi(t)) be the mean and variance functions. Define

b ap®)

then the entropy H(t) of f; is a concave function of t.
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Proof. Writing v = p/(t), since p”(t) = 0, we can use differential properties satisfied by
Gaussian kernels to compute

o VI(t)0fi(xz) 0
gi(x) = w(@)fi(z) - 5 or vfi(x) + oz(t)%ft(x),
where a(t) ;== —1V’(t). Since we have 2a(t) = >7, p? > 0, we apply Theorem 2.7 to

show that the entropy H(t) of f; is a concave function of ¢. The conditions of Remark 2.2
can all be directly verified in this case; the key is that g,(z)/f;(x) is a linear function of
and hi(z)/ f:(x) is quadratic in z. This argument works for any Gaussian densities of the
form (20), where V" (t) < 0 and p(t) is an affine function of ¢. O

Remark 2.9. It is possible to use the explicit expression for the entropy of a Gaussian
random variable to prove Theorem 2.8 directly. Howewver, as there is no explicit expression
for the entropy of a sum of Bernoulli variables, it is not possible to adapt such a proof in
the discrete Shepp-Olkin case, and we require the assumption that all p; > 0 in that case.

3 Discrete gradient field models

3.1 Motivating example and discrete Benamou—Brenier formula

We now show how natural choices of paths connecting probability mass functions on the
integers can be viewed in the gradient field framework of Section 2. We give a new per-
spective on the time derivative using a series of functions oy (t), where £k = 0,...,n and
0 <t < 1. Recall that we use the left derivative map Vi defined by Vifr = fi — fr_1
for any function f, and write V, = (V1)” for the map taking Vafi = fr — 2fi-1 + fo_o2.
Write V3, defined by Vi fi, = fr — fra1, for its adjoint (with respect to counting measure).
Recall A denotes the set of measurable functions a(t) = (ag(t), a1(t),. .., an(t)), where
ap(t) = 0 and «a,(t) = 1, and 0 < ai(t) < 1 for all k and t. We first give a motivating
example, which is a special case of the Shepp—Olkin interpolation.

Example 3.1. We write Bing(n,p) := (Z)pk(l—p)"_k for the probability mass function of a
binomial with parameters n and p. For fitedn and 0 < p < ¢ < 1, define p(t) = p(1—t)+qt,
and write fi(t) = Bing(n, p(t)) for the probability mass functions which interpolate in the
natural way in the parameter space. A simple calculation (see for example [24] and [30])
shows that for any k =0,1,...,n:

We reformulate Equation (21) using an insight of Yu [36], who defined the hypergeometric
thinning operation, observing in [36, Lemma 2] that for any n, p:

(k+1)

k
Bing(n — 1,p) = Bingi1(n,p) + (1 - 5) Bing(n, p). (22)
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This suggests that we rewrite Equation (21) in the form, modelled on (10),

ety 191 (g =) ®)  Fork=01m (29

for (1) = ara®fin(®) + (- a@®)fit) fork=0,1....n—1 (24)
with ay(t) = k/n for all k and t.

0

The form of Equations (23) and (24) suggests a version of the Benamou-Brenier formula
[5, 6] for discrete random variables.

Definition 3.2. We write Pz(f(0), f(1)) for the set of continuous, piecewise differen-
tiable families of probability mass functions fi, given end constraints fy(t)|i=o = fx(0) and

fr@)]i=1 = fi(1). Given a(t) € A, for fi(t) € Pz(f(0), f(1)) define probability mass
function g,(ca)(t), velocity field va i (t) and path length Z(f) by

g (#) = s () fr () + (1 — aw(®)) fu(t)  for k=0,1,...,n—1, (25)

0= aaftk( t)+V, (va k(t )g,(ca) (t)> t-almost everywhere for k =0,1,...,n, (26)
n—1 1
= / (Z o <t)va,k<t>2> = [ s 1)
o \'=o 0
Define V,, via
2 _ : 2
Vn (f<0)7 f(l)) - fkepz(z%)é%(l)),.’zj(f) . (28)

and refer to any path achieving the infimum in (28), if it exists, as a geodesic.

Proposition 3.3. V,, is a metric on the space of probability measures on {0,...n}, More-
over, for any geodesic f we have

Va(f(s), F(1)) = [t = s|Va(f(0), (1)) for any 0 < 5,1 <1. (29)

Proof. 1t is clear that V,, > 0 and that V,(f,g) = 0 implies f = g. To prove V,, is
symmetric, we transpose the path f(t) in time fi(t) = fr(1 —t), taking &k( ) = ap(l —1t)

gives G (1) = g\ (1 — ), and vs s = —va s 50 that V2(£(0), £(1)) = V2(f(1), (0)).
To prove the triangle mequahty, we consider three mass functions f ( ), f*, f(1). For
) w

any paths (f(© )(t))te[o,l} c Pz(f(0), f*) and (f¢ (t))te[o,u € Pz(f*, f(1)) we construct
(f(t»te[o,l] € Pz(fo, f1) such that Z(f) = I(f(0)> +I(f(1)), as follows.

o If t < pwe set 7o(t) :=t/p and fi(t) = f(75(t)). We then have ay(t) = ol (7o(t)),
with g; (£) = g (70()) and vex(t) = 2o} (7o(t)).

o If t > p we set ﬁ(t) (t — p)/(1 — p) and fi(t) = f)(71(t)). We have ay(t) =
o ((1)), with i (1) = gt (r1(£)) and va k(1) = 0l) (1 (D).
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The change of variables formula allows us to compute:

pn—l 1 1 n—1 1
I(f)? = /0 > g (no(t ; v (1o (t))%dt + / > g M (1_p)20g{;(71(t>)2dt
P

k=0 k=0

1

1
= ;I(fo) +1sz(f1)-

WO{S+% gives the result.

We can extend the same argument to prove Equation (29) above. We first prove the
case t = 1. Consider any geodesic f and 0 < s < 1. We can take f* = f(s) in the argument
above and decompose the geodesic into a path from f(0) to f(s) of length Z(f(®) and a
path from f(s) to f(1) of length Z(f™). We know that the optimal p* is equal to s
(otherwise we could reduce V,, by taking the path at a different rate, contradicting the fact

that f is a geodesic). We deduce that Z(f©) = s (Z(f©) + Z(f™)) = sV,.(f), or that the
inner sum B(t) = Sp—, g,ga (t)vax(t)? is constant almost everywhere in .

We can prove the more general form of Equation (29) using a similar argument. We
decompose the path into three parts f© € Py (f(0), f(s)), fY € Pu(f(s), f(t)) and f@
Pz(f(t), f(1)). Let us consider some 0 < py < p; < 1, and take 79(t) := t/po, T1(t) :=
(t —po)/(p1 — po) and 7o(t) = (t — p1)/(1 — p1). A similar argument shows that unless
po = s and p; = t, the length of the path can be reduced in the same way. ]

Choosing the optimal p = p* :=

3.2 Constant velocity paths

Lemma 3.4. For any geodesic f(t) between f(0) and f(1), the B(t) is constant in t.
Further, if there exists a geodesic between these, then writing mean \(t) = >, kfi(t) the

Va(f(0), f(1)) = [A(0) = A(1)],
with equality if and only if v = v for all k and t, for some v.

Proof. Proposition 3.3 shows that for any geodesic, we know that /5(t) = V,,(f(0), £(1))
for almost all ¢. Since A(t) = >, _, kfx(t), differentiating and using Equation (26) gives

Z k¥ (Ua k( > Z Vi( (Ua k( > Z gl ) Vau(

(30)
since —V*(k) = 1. Using Equation (26) and Cauchy-Schwarz, since ¢(®(t) is a probability
mass function, Equation (30) gives that for any ¢, since

(2% ) > (Zg£“><t>va,k<t>) -(%Y) e

or that ‘ < /B(t) = Vo, (f(0), f(1)), and the result follows by integration.
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Observe that equality holds in Equation (31) if and only if v, () = 2(¢) for all k, and
equality holds overall if and only if 2}(t) = V;,(f(0), f(1)) for all . O

Lemma 3.4 focuses attention on interpolations for which velocity field v, x(t) = v for
all k£ and ¢, for some a(t) € A. Recall that Definition 1.2 refers to such an interpolation
as a ‘constant velocity path’ and we say that f(t) satisfies a modified transport equation.

Lemma 3.5. If fi(t) can be expressed as a constant velocity path for some choice of v and
a € A, then this representation is unique (there is no other choice of v and o € A for
which it is a constant velocity path).

Proof. Equation (30) shows that if there exists a constant velocity path with velocity v,
then v = A(1) — A(0). Using a similar argument, we can solve for a. The key is to observe
that, since «,, = 1, for any a € A, Equation (25) means that the sum

igla Z fi®) = aw(t) fu(t). (32)

Using the distribution function Fj(t) := 22:0 fr(t), taking v, (t) = v we can sum Equation
(26) over k to obtain
OF;
ot
Hence, gl(a)(t) is also fixed by the form of the path f(¢), and on rearranging Equation (32)
We express

(1) +vgl® (1) = 0. (33)

> filt) — Zlkgl ()

(f) = fe(t)

(34)
O

Equation (34) implies that ay(t) is a smooth function of ¢ in the case of constant
velocity paths. In particular, it is legitimate to consider the derivative %ak(t), as it is
done for instance in the proof of Lemma 4.1. We now show that in certain circumstances
our distance measure V,, coincides with the Wasserstein distance Wj, a metric which is
known to have a natural relationship to discrete interpolations as described in Section 3.3

below.

Lemma 3.6. If there exists a constant velocity path between f(0) and f(1) with velocity v
then the Wasserstein distance W1i(F(0), F(1)) and V,,(f(0), f(1)) coincide, and are equal
to \(1) — X(0).

Proof. Recall from the proof of Lemma 3.5 that if there exists a constant velocity path
with velocity v, then v = A(1) — A(0). Without loss of generality we may assume that
v > 0. In this case, V,, = v = A(1) — X\(0).

Using Equation (33), positivity of v means that Fy(t) is decreasing in ¢ for all ¢ and k.
This means that F'(0) stochastically dominates F'(1) in the standard sense (see for example

12



[29]). Lemma 8.2 and Equation (8 1) of [7] together show that for any distribution functions
F(0) and F(1), the Wy (F(0) = [|F(1),— F(0),|dy, so in this stochastically ordered

case we deduce that
Wi(P(0), F(1)) = / (F(O0), = F(1),)dy = [ yaF(1), ~ [ wdF(0), = \(1) = X(0),

and the argument is complete. ]

3.3 Binomial interpolation

Example 3.7. Comparing Equations (23) and (26) shows that, taking ax(t) = k/n, the
binomial interpolation (Example 3.1) has constant velocity va(t) = n(q — p) and hence
achieves the lower bound in Lemma 3.4, with V,(Bin(n, p), Bin(n, q)) = n(q — p).
Contrast this with the approach of Erbar and Maas [12, 23] (see also Mielke [25]), based
on Markov chains with a given stationary distribution 7. In the two-point case, taking as
a reference ™ = (q/(p + q),p/(p + q)), [23] writes p° for a relative density equivalent to
the probability mass function f° = (f) 7f1) = ((1-8)/2,(1+ B)/2). Ezample 2.6 of [25]

arctanh r
implies a distance of W(p®, p’) = \/_/ ———dr, in this case, in contrast to the
r
|8 — «|/2 we obtain.

Example 3.7 can be generalized considerably as follows. Given a probability mass
function f, Rényi [28] introduced the thinned probability mass function T} f to be the law

of the random sum
> BY, (35)

where X ~ f and Bi(t) are Bernoulli(#) random variables, independent of each other and of
X. Thinning interpolates between the original measure f = T f and a point mass at zero
Tof. This operation was studied in the context of entropy of random variables in [17], and
was extended by Gozlan et al. [13] and by Hillion [15] for probability measures on graphs,
implying the following definition in the case of random variables supported on Z:

Definition 3.8. A coupling m of mass functions f(0) and f(1) supported on Z (that is,
a joint distribution function m,, whose marginals satisfy f(0), = Zy Tay and f(1), =
Y e Tay), induces a path as follows. Section 2.2 of [13] defines a mass function

i) = 0f(t) =Y mey By — 2. t), (36)

m?y

which we can understand as the law of the random sum X—I—ZL}X BY

1)

where (X,Y) ~
and as before B(t) are Bernoulli(t) random wvariables, mdependent of each other and of
(X,Y). Here, we use the convention that for m >0, > . B -3 B(t)

13



Proposition 2.7 of [13] gives a partial differential equation showing how fi(t) evolves
with ¢, using a mixture of left and right gradients (as in [16]). Proposition 2.5 of [13]
shows that if 7* is an optimal coupling (in Wasserstein distance W) then v™ (t) defines a
(constant velocity) geodesic for the W, distance. We relate this to the discrete Benamou—
Brenier framework in the stochastically ordered context (see Lemma 3.6).

Lemma 3.9. If f(0) is stochastically dominated by f(1), then the interpolation (fx(t))
defined by Equation (36) gives a constant velocity path.

Proof. In this case, z <y for all (z,y) in the support of 7. Define v = > 7, ,(y — ),
and 7, = m,,(y — x)/v for another ‘distance-biased’ joint distribution function. Direct
differentiation of Equation (36) gives that

%(t} = ;m,y(y — ) (Binkz—x—l(y —r—1,t) = Bing_,(y — v — 1»75)) = —Vi(vge(t)),

where gi(t) = >_, , TuyBing . (y—2—1,¢). Since for any z, the convolution (1—¢)Bin, (m—
1,t) + tBin,_;(m — 1,t) = Bin,(m, t), in Equation (36) we can express

F) =y (1= 6)Bing_y(y — z — 1,t) + tBiny_, 1 (y — 2 — 1,1)) (37)

and substituting in Equation (34) we obtain:

>y T [N 1 (y — 2, 1) + 2015 Bing o (y — 2 — 1,4) (1 — 52)]

In future work, we hope to consider the question of which interpolations in the form of
Equation (36) induce coefficients satisfying 0 < ay(t) < 1.

Example 3.10 (Translation case). Hillion considered the translation case, where f(1)gim =
f(0) = fr for some m. Theorem 1.1 of [14] proved that if f is log-concave (that is
f2 > fio1fesr for all k), the entropy is concave in t. This paper generalizes Hillion’s re-
sult: the conditions of Theorem 1.3 can be verified and the concavily of entropy is reproved.

In particular we interpolate by 7., supported only on {(z,y) : y—x = m}, so that ™ =,
and clearly v = m. Then Equation (37) simplifies to give fi.(t) = (1 — t)gr(t) + tgx_1(t),
and Equation (38) becomes

tor-1(t) _  (L=1)gi(?)
fe(t) fr(t)

so that clearly ay(t) lies between 0 and 1 for all k and t.

Equation (39) shows that GLC, Condition 3, holds with equality in this case. Further k-
monotonicity, Condition 1, holds as a consequence of log-concavity of gx(t) (which follows
from log-concavity of f). The t-monotonicity, Condition 2, is less straightforward, but can
be verified using direct calculation, using the log-concavity of h.

ax(t) (39)
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3.4 Generalized log-concavity

Recall from Section 2.2 that probabilistic inequalities can be proved for densities f such
that f/¢1 . is log-concave. For integer-valued random variables the corresponding property
of ultra log-concavity was introduced by Pemantle [27] and promoted by Liggett [21]:

Definition 3.11 ([27, 21]). For anyn, a probability mass function supported on {0,1,...,n}
is ultra log-concave of order n, denoted by ULC(n), if the ratio fi/Bing(n,t) is a log-
concave function. Equivalently we require that

k+1 k+1 k+2 k
(1_T> f,fH—T(l——) fefeee >0 fork=0,...,n—2. (40)

n n

We include the possibility that (formally speaking) n = oo, in which case we require that
the ratio of fr and a Poisson mass function be log-concave, and write ULC(00).

This condition was first used to control entropy by Johnson [17], who showed that,
fixing the mean, the Poisson is maximum entropy in the class ULC(00). A corresponding
result was proved by Yu [37], who showed that, fixing the mean, the binomial is maximum
entropy in the class ULC(n). This generalizes the result (see [24] and [30]) that the
entropy of Bernoulli sums with a given mean is maximised by the binomial, since Newton’s
inequalities (see for example [26]) show that Bernoulli sums are ULC(n).

Our generalized log-concavity Condition 3 generalizes Definition 3.11, with ULC(n)
corresponding to GLC(a) for ay, = k/n, as in Example 3.1. Note that GLC, Condition 3,
and k-monotonicity, Condition 1, together imply that f is log-concave.

4 Framework for concavity of discrete entropy

In this section, we prove Theorem 1.3, which shows that entropy is concave if Condition 1,
2 and 3 are satisfied. In fact, since t-monotonicity (Condition 2) is too restrictive for our
purposes, we prove a more general result, Theorem 4.4, which gives concavity of entropy
despite replacing Condition 2 by the weaker Condition 4. Lemma 4.2 shows that this
condition is indeed weaker, and hence together with Theorem 4.4 proves Theorem 1.3.

Condition 4. Consider a constant velocity path, satisfying a modified transport equation
%(t) = —ovV, (g,ia) (t)) with some h satisfying 2Lk (t) = v*Vq (hy). If we define

o2

2 2
2 - () e - () R
hy = 5 , (41)
Jiev1 = Tofuto

then we require that B
hy <hg fork=0,1,...,n—2. (42)
We first observe that the same coefficients (o )r—o.. » introduced in Equation (2) can

be used to state a second-order modified transport equation:
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Lemma 4.1. If there exist coefficients o giving rise to an interpolation with constant
velocity v then

a;tf;’“ =0V, (), (43)
where (in a result paralleling (17) in the continuous case above), for k=0,...,n — 2,
hie = (1 —ap)(1 = apgr) fo + 20041 (1 — igr) frg1 + Q1 Qppo frgo — k+1%aogl+1 (44)
Proof. Recall that we write
9 = a1 (6) frr(8) + (1 — ap(D) fu(t)  for k=0,1,...,n — 1. (45)
Differentiating Equation (45) we have
ag_](:t)
ot
= fk+1%+ak+l%+<l )aa]; —fkaak
= leaakH — (1l — akﬂ)g,(f) — U()ék+1gk+1:| {fk% —o(l — Oék)gl(ga) - Uakgl(ca)
= Vi [vh],
using the expression from (44), and the proposition follows easily. O

Lemma 4.2. If Conditions 1, 2 and 3 hold, then Condition 4 holds.

Proof. Using hy, and hy defined in Equations (41) and (44), then we need to prove that
hy < hy for all k. For simplicity, we write

Dy = fi = fi-ifern > (46)
Ay = (frgy - fkgl(ci)l) > (47)
By := (fk+1gk+1 fk+2gk ) > 0, (48)

The positivity of A and By follows from GLC and k-monotonicity, since we can write
(1 —op1)Ar = GLC(o)k + (g1 — ak)fkg;ﬁ)p
1By = GLO(a)i + (g2 — Oék-i—l)fk—i-Zg](.ga)

The key is to observe that in this notation, by Lemma 4.1:

(@ 4 4 @

- + B

b = ZenfRT 9 Tk (49)
Diq

o 1 804
hy = ak+19;(€+)1 + (1 - Oék+1)91(c - fk+1v aktﬂ-

(50)
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Direct calculation gives

g](ga)Dk-i-l = fes1Ax + fiuBr, (51)
K Diir = fer2 A + i Br. (52)

Considering the coefficients of Ay and By, we can substitute (51) and (52) in Equation
(50) to obtain:

~ — A — ay) By 10
Ty — hy = Jrv2(Qraz — 1) A + fr(orer — o) ka Qk+1 >0, (53)
Dk+1 at
where the positivity of 2 ’“*1 is assumed in Condition 2. O]

We need one further result, which can be directly verified by differentiation:
Lemma 4.3. Writing 0(v) = 1/(2v) — v/2, we have
0< —logv <0(v), forv<l1.
Theorem 4.4. If Conditions 1, 3 and 4 hold then the entropy of H(f) is concave in t.
Proof. For simplicity, we write gy for g,ia). First note that Conditions 1 and 3 together
imply that f is log-concave. In fact, they imply two stronger results, that

fk+29k
frt19641

fkgk+1
Jr19k

This means that, using Lemma 4.3, writing 6(v) = 1/(2v) — v/2, we can write

_ fk(t)karQ(t)) _ (fkng) _ ( Jrr20k )
0= —los ( Jrr1(1)? tog Je+19k tog Jrr19k11
JeGr+1 Jrr29k
=0 (fk+1gk) Y <fk+1gk+1)
- _ Den (g_,% + @) (55)

2fr+19k9k+1 \ Sk fri2

where the last identity follows by grouping together multiples of gx11/gx and gx/gr+1 and
factorizing. In a standard fashion, we can write the second derivative of entropy as

o = 3 oo -3 1 (o)

= - Z 023 () log(fu(1)) — 3 o)l (56)

A

_ o (B 050 S (Vo))
- Zh’“(l (i) 0

~ [5 D 9% . 9 G 99k | G
02 {h ( k+1 <_k + k+1 Jk 9 + + k+1 58
% "\ 2firigrgin \Fr  frre Jr Jorr Sree (58)
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where Equation (56) follows using Equations (3) and (1) respectively, and Equation (57)
uses the adjoint of Vy. Finally Equation (58) follows from Condition 4 and Equation (55),
using the fact that both terms are positive.

Using Equation (49), we can write the first term in the square bracket in Equation (58)

(gr+1 4% + 91.Br) (9_;% n 9/3+1>
2 fkr19k9k+1

as

J

Further, since we can write

<gi kg1 giﬂ) G 91 g
-\ = ks

Jr Jre1 +fk_+2 T e T freeafere

we can expand Equation (58) in terms of A; and By as

(Argrs1 — Brgr) (frr298 — frginn) _ _Jrferifrro ( i - s )2 (59)
feferr forifere/)

2 fifr1 frr29r g 29k 9k+1
Here the final equality follows since the form of Ay and By means that the two bracketed
terms in the first expression in Equation (59) are in fact equal. ]

It would be of interest to understand how this remainder term (59) relates to the
corresponding term found for continuous interpolations in Equation (13).

5 Shepp—Olkin interpolation as a constant velocity
path

Recall that in Conjecture 1.1 we are given n > 1 affine functions p; : [0,1] — [0, 1] where
for each 7, p;(t) = p;(0)(1 —¢) 4+ p;(1)t. We denote by (fx(t))k=0.1.. » the distribution of the
sum of independent Bernoulli random variables of parameters p;(t),...p,(t). Further we

,,,,,

distribution of a Bernoulli sum with parameters py(t),...,pi—1(t), pic1(t),...,pa(t), and
f,gw )(t) for the ‘leave two out’ sum, involving all parameters except p;(t) and p;(t). Define

DY = (= £ (60)
BY = (PR - 108, (61)

with corresponding notation for Dy, D,(f’j ) and so on.

We now show how the Shepp—Olkin problem can be viewed in the framework we in-
troduced in Section 3. To be specific, if each derivative p) is positive the Shepp—Olkin
interpolation is a constant velocity path with velocity v in the sense of Definition 1.2.
That is:

18



Proposition 5.1. If all the p;, > 0, then the probability mass function defined by the
Shepp—Olkin interpolation satisfies a modified transport equation:

Ofr

Here we set v := Y | p;, and write the probability mass function

gr(t) = (1 — a(t)) fu(t) + g (t) frgr (t), (63)

where

S pp AN S A - p0) A7)
vfelt) vfilt) |

Observe that ap(t) = 0 and o, (t) = 1, and that if all p; > 0 then 0 < ag(t) < 1 for all
k and t. Further, this interpolation satzsﬁes a second-order modified transport equation of

the form 88;;’“( ) = v*Vy (hy), where

a(t) (64)

Z'L;&j plp] ]52 )
v? '

hy, = (65)

Proof. Observe that by definition, the fj have probability generating function

ka S | CEF 0RO}

which has derivative with respect to ¢ given by

Z 8fk sz s —1) H (1 —p;(t) + sp;(t)). (66)

k=0 JF#i

Comparing coefficients of s, we see that % + V1 (vgi(t)) = 0, where gi(t) :== = >0, pif
Substituting Equation (64) in Equation (63), we obtain that gx(t) = g (), and so Equatlon
(62) follows.

The values of ay(t) and a,,(t) follow from the fact that fg = f% = 0. The positivity
of ag(t) and 1 — ay(t) follow from the assumption that p; > 0, meaning that all the terms
in both the fractions in Equation (64) are positive.

The form of hy, stated in Equation (65) follows on taking a further derivative of Equation
(66) to obtain

86275]} Z Zplp] s—1)° H (1 = pe(t) + spe(t)), (67)

k=0 i=1 j#i 0#i,5

and again the result follows on comparing coefficients of s. O
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For clarity, we now suppress the explicit dependence of ap on t. We first verify the
k-monotonicity Condition 1 for Shepp—Olkin interpolations with p; > 0.

Proposition 5.2. For the Shepp-Olkin interpolation described above, if p, > 0 for all i
then the coefficients (ou)k—o1...n Satisfy the inequality ap < ayy1, that is k-monotonicity
(Condition 1) holds.

Proof. 1f k is such that fi > 0 and fyyq > 0, then

> i1 PiDi [fk(:i)fk - f;ii—)1fk+1]
(Z?:l Pi) frfrern '

Q41 — QO =
Moreover, for i € {1,...n}, we have

B0 = 1000 = 10 [0+t ] = 12 [ =) £+ pif

= (-p) [(A? = 1280 2 0,

by the log-concavity property of the Bernoulli sum f®. The fact that each p] is non-
negative finally proves that oy < ayq. [

Remark 5.3. In the Shepp—Olkin case, ay is a conditional expectation of a weighted
sum, similarly to the ‘scaled score function’ of [20]. This follows since writing B; for a
Bernoulli random variable with parameter p;(t), we obtain P(B; = 1|B1+ ...+ B, =k) =

pi(t) élzl(t)/fk(t), so that Equation (64) can be expressed as

ap(t) =E (Zn: \:B; Xn:BZ- = k) , (68)

where weights \; = pl./(>_ pi). Note that in particular, in the ‘symmetric’ case where p; = p/
for all i, then X; = 1/n and oy (t) = k/n.

This conditional expectation characterization allows us to give an alternative proof of the
k-monotonicity Proposition 5.2. A result of Efron [11] (see also [18, Equation (3.1)]) shows
that if ¢(uy,...,uy,) is an increasing function in each variable and Xy, ..., X, are inde-
pendent log-concave random variables, then ®(k) = E[p(X1,..., X,)|[ X1+ ...+ X, = K]
is an increasing function of k. Applying this to ¢(By, ..., B,) = > N B;, the result follows.

We now prove that in the monotone Shepp—Olkin case the Bernoulli sum mass function
is GLC(a), for the natural choice of a;, and hence Condition 3 holds.

Proposition 5.4. For the Shepp—Olkin interpolation, taking o as defined in Equation (64),
if all the p} are positive then the Bernoulli sum mass function (fi)r=o1,.n s GLC(a),
and Condition 8 holds.
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Proof. Formula (64) shows that GLC(a);, can be written as 1/v? times

(Z:pépif;f)> (sz (1—p; ka) (sz (1—p) ) (Zp,pz k+l> . (69)

Expanding this expression as a quadratic form in p,...,p., the coefficients of p*> vanish,
leaving an expression which simplifies to

w0 | (67) - #9582
1<J

The positivity of this expression, and hence the GLC(a) property, follow from the log-
concavity of (f")i—o.. n_» and positivity of p.. O

.....

6 Entropy concavity for monotone Shepp—Olkin regime

We now show that entropy is concave in the monotone Shepp—Olkin regime. Having already
verified Conditions 1 and 3 in Propositions 5.2 and 5.4, Theorem 4.4 shows that concavity
of entropy follows if Condition 4 holds.

Proposition 6.1. For monotone Shepp—Olkin interpolations, Condition 4 holds if

> (0Ppi(1 = p)biy + pPpi(L = p)bji + 20pipi(1 — pi)pi(1 — pj)cig) >0, (70)

i<j
where b; ; and ¢; ; are defined in Equations (72) and (73) below.
Proof. We use the fact that (in the notation of Equations (47) and (48)) the numerator of
hy can be written as g1 A + g1 Br, Where
1 ,
Aj, = - = =N ppD? >0
k= (frer19% — frgr+1) » szp p =0,

By = (fes1Gke1 — frv2ge) = — sz (1—p)DyL, > 0.

This means (using the expression for hy from Equation (65) above) that Condition 4 is
equivalent to the positivity of

V(g1 Ar + 9 Br) — Digr Y P i
i#]

- Z( 02 (LDl + 101 = )DL, )

+ 3o (S + 100 = p) DL = D 7). (71)
i#]
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We expand the two bracketed terms in Equation (71) in terms of fé” ), using Lemma A.1
below, which implies (using the notation of Equations (60) and (61)) that

flgl)f]g?l = Zp] p] D(ZJ)
J#i

i) pi 1 ij
R, = §ij(1—pj)E/E;_]1)
j#i

First observe that
fk+1 zD()+f ( )Dl(fll
= wf [ fm} —pfh AL+ Q=) £ (50 R] = = po s |50 £

= ij(l - pj)§ <2psz Z]) psz+1 (Z]) + 2(1 - pz)karl (Z]) ( pz)fk )EkJrl)
J#i

> pi(d

JFi

where each term 1n square brackets is expanded using Lemma A.1. Further by writing
P = 1= p) 7 4 p; £ we can rearrange the expression for b; ; as

1 1,7 2 ] %, 7 7, 7,
bi,j — §pipj <<f]§ J)) Ig—jl) < > f]i+J1 f( J fli ])fk J))

+%(1_pi>(1_pj)(< (”)> fk”)_2<fkw)> +fk fk” Iiul)

w3y (2(507)" = A A0 + (#9)"462)
ol p) (2 (F59) = 350 69 109) 4 (1)) ,5?3). (72)

Similarly, using simplifications such as the fact that
Dy =(1—p)* DY, +p2DY + pi(1 - p)EY.
the second bracket of Equation (71) can be written as p;(1 — p;)p;(1 — pj)c; j, where
Cij = <fliz+]1 B fk” ”) flgigD(i’j)>
_ < Igi,j)) 4 2fk; fku)fkw) <f151+31) f )
_< (”> fk”)WLfk”)fk”)fk (73)
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Lemma 6.2. For the monotone Shepp—Olkin interpolation, for each i # j the b; ; > 0 and

pit —pj) +pi(1—pi)
9 i,Js

and hence Condition 4 is satisfied, and so the entropy is concave.

Proof. To verify the positivity of b; j, we simply observe that each of the brackets in Equa-
tion (72) is positive, by an application of the Equations (77), (78), (81) and (82) proved in
Appendix A below.

To verify that b;; + & (pi(1 — p;) + p;(1 — pi)) ¢;; is positive, we consider adding the
final two terms of Equation (72) to the expression given in (73), to obtain

= pom ((507) = S8 5080 - (50) 5+ 20800 12
3 .. .
i1 - m(( OV = SRR~ (1) 58D + 1) “f,iﬁz),

where the positivity of the two final terms is guaranteed by Equations (79) and (80) below.

Condition 4 is verified by considering two separate cases. If ¢; ; > 0, then all the terms
in Equation (70) are positive. Otherwise, if ¢; ; < 0, then the bracketed term in Equation
(70) has negative discriminant as a function of p; and p/:

Api(1 = pi)pi(1 = pj)ci; — 4bijbis < ¢y (4ps(1 — pi)p; (1 — p;) — (pi(1 = p;) + p; (1 — pi))?)
= _C?,j(pi - pj)2 <0,

since under this assumption both sides of Equation (74) are positive, so it can be squared.
In either case, we conclude that Equation (70) is positive, and Condition 4 is satisfied. O

Since Condition 4 has been verified, the proof of Theorem 1.5, is complete.

A Technical results regarding Bernoulli sums

In this section, we prove some technical results regarding the mass functions of Bernoulli
sum random variables, required to prove the monotone Shepp-Olkin Theorem 1.5.

Lemma A.1. Let (fi)rez be the Bernoulli sum of parameters p1,...p,. Then for every
k€ Z and q > 1 we have the identity

qfkfk: q Zp] 1 _p] [ 1fk])q - ]ij)flijf)qfl] . (75)
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Proof. We use induction on the number m of parameters, the case where m = 1 being
obvious. If (fx)rez is the Bernoulli sum of parameters py, ... p,, we set for p € [0, 1]

fe = (1= p)fu +pfer
and we want to prove, given k € Z and ¢ > 1, that
0fifi-q = ij(l —pj) [f,?_)lf,?_)q - f,ﬁj)f,ij_)q_l
j=1
+p(1 = p) [fe-1frq = fufr—ql]- (76)

Expanding each side with the respect to the basis (1 —p)?,2p(1 —p), p?, using the fact that
f,g]) = (1 —p)f,g]) +pf,§{)1 it is easy to show that Equation (76) is satisfied for some k € 7Z
and g > 1 if (75) holds true for the pairs (k,q),(k,q+ 1) and (k —1,q). O

Next we prove the following technical inequality, which may be of independent interest:

Theorem A.2. Property(m) holds: that is, for every (g,Em])kez which is the probability
mass function of a sum of m independent Bernoulli variables

2 2
Cr(k) = g™y (o) =2 (o) alih + o ool 2 0, Jorallk ez, (77)

We first show that Property(m) implies a number of related inequalities, which are
of use elsewhere in the paper:

Corollary A.3. If Property(m) holds, then for any g™, the probability mass function
for the sum of m independent Bernoulli random variables, for all k € Z.:

= m\? [m] I \? [ml | [m] [m] [m]

Ci(k) = <9k ) Gry1 — 2 (9k+1) 911 T Gra29r Jpr = 0, (78)
3 2

02(k) = <g][<; }> - g][{;—]lg][{,’ ]gl[<:+]1 - (g][(;—]]_> g]E;+]2 +g][<;—}2g][g ]g][ﬁ_}z > 0, (79)
Cy(k) == (gL ]> — g g — (g;[cﬂl) g+ g hag, > o, (80)

]\ (m] [m] _[m] ml \2 [m]
Cs(k) =2 <9k ) =30, 19% k1t <9k—1> Ggra = 0, (81)

= m]) 3 (m] [m] [m] ml \? [m]
OS(k) =2 <9k ) — 39,19y, i1 T <9k+1> 9 = 0, (82)

2

Dy (k) =2 (QL ]> P 39;&,]29;&7]19@]1 + g,[gﬁlg,[c g™l > o, (83)

Proof. First note that these inequalities can be paired up by a duality argument. That is, if
Property(m) holds for every Bernoulli sum ¢I™, it is true for g, := g,[ZL_ » With parameters
1—p1,1=po,...,1—py,, which implies Equation (78). Similarly (79) implies (80) and (81)
implies (82). We write

2
Dl[g V= <gl[f ]> - gl[ﬁf]lgl[wr]l’
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which is positive because g™ is a sum of independent Bernoulli random variables, and
therefore log-concave. In this notation, Equations (79), (81) and (83) are a consequence of
(77), since simple calculations show that

[m] [m] [m] _[m]

g,[zi]lCQ(k) = 209k 1 — gk719k+2)Dl[qm] + 91@201(]{7) >0,
2 _

g Cok) = 2(D") gl Ty > 0,

g Di(k) = 2g",Ch(k) + giCr(k — 1) > 0.

Here, positivity of (g,[ﬂm} g,[ﬁl — g,[ﬁl g,[:ﬁg) is again a consequence of log-concavity of g!™. O

In a similar way, we can argue that:

Proposition A.4. If Property(m) is satisfied, then for every sum of m independent
Bernoully variables we have

g,[em] D,[cm] - g,&rng,[:fl > 29,[;1]217,[2]1 for every k € Z. (84)

Proof. We can restate Property(m) as being equivalent to the inequality,

ml < 91
m + m
Dy 2 = P
k-1
iteration of which gives
ml < Jis Gis i
m + 4 m
Dk+1 > Wkafh
ko Y1
so Equation (84) holds if we have
[m] _[m] [m] _[m]
I+ S a0

9e-19k+2  9r Y9k

which can be rewritten as

2
[m]
Cik+1) (") Cu(h)
[m] _[m] [m] m\2 [m] [m] * m]\* m]
Ik—19k+19k+2 (gk > I—19k+1 <9k ) Ir-1
which is positive by assumption, which proves the proposition. O]

Proof of Theorem A.2. We prove Property(m) by induction on the number of parameters
m. It is clear that Property(1) is true. Let us suppose Property(m) holds for some
m > 1. In order to prove Property(m + 1) it suffices to show that, for every k € Z,

m—+1 ml2 m12m m—+1] [m+1] [m+1
gt () =2 (") gt + gl g gl > 0, (85)
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where g™+ is the distribution of a sum of m+1 Bernoulli variables. For p = pp,.1 € [0,1],
we can write g,[cmﬂ] =(1- p)g,[cm] + pg,[:i]l. To prove that (85) is positive, we expand it as
a polynomial in p, of order 3, in the basis (1 — p)3, p(1 — p)2,p?(1 — p), p®, and show that

the coefficients of each of these terms are positive.

1. The coefficient of (1 — p)? is C;(k) which is clearly positive, by Property(m).
2. The coefficient of p3 is Cy(k — 1) which is also positive, by Property(m).

3. The coefficient of p(1 — p)? is Dy(k) which is positive, since Property(m) implies
Equation (83).

4. The coefficient of p?(1 — p) can be written g,[:_l]lD,E/,nf}1 + g,[ﬁ]gD,E;m} — Qg,[ﬁlD,@Q, which
is positive by Proposition A.4.

Since each coefficient is positive, we deduce that Equation (85) is satisfied, which shows
that Property(m + 1) holds. O
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