No document available.
Abstract :
[en] We are constantly dealing with quantities in our environment. This ability to process numerical magnitude is present in infants (Izard et al., 2009), a variety of animal species (Flombaum et al., 2005) and in tribes with small number words lexicon (Pica et al., 2004). It implies that our brain is able to extract the total number of items in a scene, regardless of perceptual interference (non-numerical properties of the stimuli). However, this ability seems to be refined through development (Halberda et al., 2012), due to visual-perception maturation and/or educational environment, e.g. when learning arithmetic.
Here, we measured rapidly and objectively 6-to-12-y.o. children’s sensitivity to (non-)symbolic numerical stimuli (dots or Arabic numbers), using fast periodic visual stimulation (FVPS) as implemented in a repetition-suppression paradigm (Rossion & Boremanse, 2011). Children were presented with stimuli appearing at 3.5 items/second (fundamental frequency=3.5 Hz), for 60 seconds. Half of the sequences consisted of different stimuli at every cycle of stimulation (e.g., “10”, “18”, “12”,...), the other half of sequences were composed of same stimuli (“10”) repeated throughout the whole sequence.
We observed a large increase of the EEG response at the fundamental frequency (a steady-state visual evoked potential; Regan, 1966) over the lateral parieto-occipital electrodes sites. This response was reduced when the same stimulus was repeated, especially for symbolic stimuli. These results are correlated to children’s age and visual-perception, arithmetic and non-symbolic numerical abilities (L-POST, KRT, Panamath). They indicate that FPVS of (non-)symbolic numerosities is a promising tool to study children’s sensitivity to numerical magnitude.