[en] A new derivation of the classic asymptotic expansion
of the n-th prime is presented. A fast algorithm for the compu-
tation of its terms is also given, which will be an improvement of
that by Salvy (1994).
Realistic bounds for the error with $li−1 (n)$, after having re-
tained the first $m$ terms, for $1 ≤ m ≤ 11$, are given. Finally, as-
suming the Riemann Hypothesis, we give estimations of the best
possible $r_3$ such that, for $n ≥ r_3$ , we have $p_n > s_3 (n)$ where $s_3 (n)$
is the sum of the first four terms of the asymptotic expansion.
Disciplines :
Mathématiques
Auteur, co-auteur :
Arias de Reyna, Juan
TOULISSE, Jérémy ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
The $n$-th prime asymptotically
Date de publication/diffusion :
2013
Titre du périodique :
Journal de Théorie des Nombres de Bordeaux
ISSN :
1246-7405
Maison d'édition :
Université de Bordeaux. Centre de Recherches Mathématiques, Talence, France