Article (Périodiques scientifiques)
Identifying protein complexes directly from high-throughput TAP data with Markov random fields.
Rungsarityotin, Wasinee; KRAUSE, Roland; Schodl, Arno et al.
2007In BMC Bioinformatics, 8, p. 482
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Rungsarityotin et al. - BMC bioinformatics - Identifying protein complexes directly from high-throughput TAP data with Markov random fie.pdf
Postprint Éditeur (1.86 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artifacts; Artificial Intelligence; Cluster Analysis; Data Interpretation, Statistical; Databases, Protein; Likelihood Functions; Models, Biological; Observer Variation; Protein Binding; Protein Interaction Mapping/methods; Recombinant Fusion Proteins/analysis/chemistry; Reproducibility of Results; Saccharomyces cerevisiae Proteins/analysis/chemistry; Sequence Alignment/statistics & numerical data; Sequence Analysis, Protein/methods; Stochastic Processes
Résumé :
[en] BACKGROUND: Predicting protein complexes from experimental data remains a challenge due to limited resolution and stochastic errors of high-throughput methods. Current algorithms to reconstruct the complexes typically rely on a two-step process. First, they construct an interaction graph from the data, predominantly using heuristics, and subsequently cluster its vertices to identify protein complexes. RESULTS: We propose a model-based identification of protein complexes directly from the experimental observations. Our model of protein complexes based on Markov random fields explicitly incorporates false negative and false positive errors and exhibits a high robustness to noise. A model-based quality score for the resulting clusters allows us to identify reliable predictions in the complete data set. Comparisons with prior work on reference data sets shows favorable results, particularly for larger unfiltered data sets. Additional information on predictions, including the source code under the GNU Public License can be found at http://algorithmics.molgen.mpg.de/Static/Supplements/ProteinComplexes. CONCLUSION: We can identify complexes in the data obtained from high-throughput experiments without prior elimination of proteins or weak interactions. The few parameters of our model, which does not rely on heuristics, can be estimated using maximum likelihood without a reference data set. This is particularly important for protein complex studies in organisms that do not have an established reference frame of known protein complexes.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Rungsarityotin, Wasinee
KRAUSE, Roland  ;  MPI for Molecular Genetics > Vingron
Schodl, Arno
Schliep, Alexander
Langue du document :
Anglais
Titre :
Identifying protein complexes directly from high-throughput TAP data with Markov random fields.
Date de publication/diffusion :
2007
Titre du périodique :
BMC Bioinformatics
eISSN :
1471-2105
Maison d'édition :
BioMed Central, Royaume-Uni
Volume/Tome :
8
Pagination :
482
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 29 juillet 2014

Statistiques


Nombre de vues
122 (dont 2 Unilu)
Nombre de téléchargements
119 (dont 1 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
15
OpenCitations
 
10
citations OpenAlex
 
15
citations WoS
 
13

Bibliographie


Publications similaires



Contacter ORBilu