[en] Fluid-flow around mechanical structures can sometimes lead to catastrophic failures. Improved modelling of fluid/structure interaction is required for safety and mechanical considerations. In this contribution, concepts for modelling the interaction of structures and fluids are presented. Starting from excitation mechanisms and associated classifications, various model depth approaches are compared. Among them, the use of added coefficients for quasi-steady problems is discussed. On the basis of potential flow theory, different approaches for determining fluid-induced additional mass are established and illustrated using an analytical example. Given the limitations of simplifying the engineering models, the second part of the paper provides a brief overview on computational methods for fluid-structure interaction and presents a monolithic modelling approach using space-time finite elements for discretisation of both fluid and structure. Applications from aero- and hydro-elasticity show the applicability of computational methods for problems involving flow-induced added mass, damping, and stiffness.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
ZILIAN, Andreas ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Langue du document :
Anglais
Titre :
Modelling of Fluid-Structure Interaction – Effects of Added Mass, Damping and Stiffness
C. Scruton. Some considerations of wind effects on large structures. In: Structures technology for large radio and radar telescope systems, Mar, Liebowitz (editors) MIT Press, 1969.
H. Sockel. Aerodynamik der Bauwerke. Vieweg & Sohn, 1984.
H. Ruscheweyh. Practical experiences with wind-induced vibrations. Journal Wind Engineering and Industrial Aerodynamics, 33, 493, 1988.
R. L. Bisplinghoff, H. Ashley, and R. L. Halfmann. Aeroelasticity. Addison-Wesley, 1955.
H. W. Försching. Grundlagen der Aeroelastik. Springer, 1974.
E. H. Dowell, H. C. Curtis, R. H. Scanlan, and F. Sisto. A modern course in aeroelasticity. Kluwer Academic Publishers, 1989.
R. Blevins. Flow-induced Vibration. Van Nostrand Reinhold, 1990.
E. Naudascher and D. Rockwell. Flow-Induced Vibrations: An Engineering Guide. A.A. Balkema, Rotterdam, 1994.
M. P. Paidoussis. Flow-induced instabilities of cylindrical structures. Applied Mechanics Review, 40:163, 1987.
G. V. Parkinson. Phenomena and modelling of flow-induced vibrations of bluff bodies. Progress in Aerospace Sciences, 26:169, 1989.
A.I. Korotkin. Added Masses of Ship Structures. Springer, Berlin, 2009.
E. Konstantinidis. Added mass of a circular cylinder oscillating in a free stream. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 469:2156, 2013.
W. A. Wall. Fluid-Struktur-Interaktion mit stabiliserten Finiten Elementen. PhD Thesis, Universität Stuttgart, 1999.
J. Steindorf. Partitionierte Verfahren für Probleme der Fluid-Struktur-Wechselwirkung. PhD Thesis, TU Braunschweig, 2002.
H.J. Bungartz and M. Schäfer. Fluid–Structure Interaction Modelling, Simulation, Optimisation. Springer, 2006.
H.J. Bungartz, M. Mehl, and M. Schäfer. Fluid–Structure Interaction II Modelling, Simulation, Optimisation. Springer, 2012.
W. G. Dettmer and D. Perić. A new staggered scheme for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 93(1):1–22, 2013.
J. H. Argyris and D.W. Scharpf. Finite Elements in Space and Time. Journal of Royal Aeronautical Society, 73:1041–1044, 1969.
J. Knippers and R. Harbord. A Mixed Hybrid FE-Formulation for Solution of Elasto-Viscoplastic Problems. Computational Mechanics, 13:231–240, 1994.
TJR Hughes and GM Hulbert. Space-time finite element methods for elas-todynamics: Formulations and error estimates. Computer Methods in Applied Mechanics and Engineering, 66(3):339–363, 1988.
B. Hübner. Simultane Analyse von Bauwerk-Wind-Wechselwirkungen. Dissertation, Technische Universität Braunschweig, Braunschweig, 2003.
T. E. Tezduyar, M. Behr, and J. Liou. A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces-The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests. Computer Methods in Applied Mechanics and Engineering, 94:339–351, 1992.
A. Masud and T. J. R. Hughes. A Space-Time Galerkin/Least-Squares Finite Element Formulation of the Navier-Stokes Equations for Moving Domain Problems. Computer Methods in Applied Mechanics and Engineering, 146:91–126, 1997.
B. Hübner, E. Walhorn, and D. Dinkler. A Monolithic Approach to Fluid-Structure Interaction using Space-Time Finite Elements. Computer Methods in Applied Mechanics and Engineering, 193(23–26):2069–2086, 2004.
E. Walhorn, A. Kölke, B. Hübner, and D. Dinkler. Fluid-structure coupling within a monolithic model involving free surface flows. Computers and Structures, 83(25-26):2100–2111, 2005.
B. Hübner and D. Dinkler. A simultaneous solution procedure for strong interactions of generalized Newtonian fluids and viscoelastic solids at large strains. International Journal for Numerical Methods in Engineering, 64: 920–939, 2005.
A. Zilian and A. Legay. The enriched space-time finite element method (EST) for simultaneous solution of fluid-structure interaction. International Journal for Numerical Methods in Engineering, 75:305–334, 2008.
B. Hübner, E. Walhorn, and D. Dinkler. Numerical investigations to bridge aeroelasticity. In HA Mang, FG Rammerstorfer, and J Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics, Vienna, 2002.
A. Kölke. Modellierung und Diskretisierung bewegter Diskontinuitäten in randgekoppelten Mehrfeldsystemen. PhD thesis, Technische Universität Braunschweig, 2005.
F. Pasenow, A. Zilian, and D. Dinkler. Extended space–time finite elements for landslide dynamics. International Journal for Numerical Methods in Engineering, 93(3):329–354, 2013.