Article (Périodiques scientifiques)
ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings.
Iacucci, Ernesto; Tranchevent, L. C.; Popovic, D. et al.
2012In Bioinformatics, 28 (18), p. 569-i574
Peer reviewed
 

Documents


Texte intégral
Reliance.pdf
Postprint Éditeur (523.98 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Motivation: The prediction of receptor—ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptor—ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text mining approach in conjunction with a state of the art prediction method, as well as a widely accessible and comprehensive dataset. Among several modern classifiers, random forests have been found to be the best at this prediction task. The training of this classifier was carried out using an experimentally validated dataset of Database of Ligand-Receptor Partners (DLRP) receptor—ligand pairs. New examples, co-cited with the training receptors and ligands, are then classified using the trained classifier. After applying our method, we find that we are able to successfully predict receptor—ligand pairs within the GPCR family with a balanced accuracy of 0.96. Upon further inspection, we find several supported interactions that were not present in the Database of Interacting Proteins (DIPdatabase). We have measured the balanced accuracy of our method resulting in high quality predictions stored in the available database ReLiance. Availability: http://homes.esat.kuleuven.be/?bioiuser/ReLianceDB/ index.php Contact: yves.moreau@esat.kuleuven.be; ernesto.iacucci@gmail. com Supplementary information: Supplementary data are available at Bioinformatics online
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biochimie, biophysique & biologie moléculaire
Identifiants :
UNILU:UL-ARTICLE-2012-1249
Auteur, co-auteur :
Iacucci, Ernesto
Tranchevent, L. C.
Popovic, D.
Pavlopoulos, Georgios A.
De Moor, B.
SCHNEIDER, Reinhard ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Moreau, Y.
Langue du document :
Anglais
Titre :
ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings.
Date de publication/diffusion :
2012
Titre du périodique :
Bioinformatics
ISSN :
1367-4803
eISSN :
1460-2059
Maison d'édition :
Oxford University Press - Journals Department, Oxford, Royaume-Uni
Volume/Tome :
28
Fascicule/Saison :
18
Pagination :
i569-i574
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 25 juin 2014

Statistiques


Nombre de vues
129 (dont 7 Unilu)
Nombre de téléchargements
142 (dont 1 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5
OpenCitations
 
4
citations OpenAlex
 
5
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu