Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Finding Outliers in Satellite Patterns by Learning Pattern Identities
Bouleau, Fabien; SCHOMMER, Christoph
2014In Filipe, Joacquim; Fred, Ana (Eds.) Proceedings "6th International Conference on Agents an Artificial Intelligence"
Peer reviewed
 

Documents


Texte intégral
BouleauSchommer-ICAART2014.pdf
Postprint Éditeur (662.81 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Machine Learning; Spacecrafts & Satellites; Anomaly Detection
Résumé :
[en] Spacecrafts provide a large set of on-board components information such as their temperature, power and pressure. This information is constantly monitored by engineers, who capture the outliers and determine whether the situation is abnormal or not. However, due to the large quantity of information, only a small part of the data is being processed or used to perform anomaly prediction. A common accepted research concept for anomaly prediction as described in literature yields on using projections, based on probabilities, estimated on learned patterns from the past (Fujimaki et al., 2005) and data mining methods to enhance the conventional diagnosis approach (Li et al., 2010). Most of them conclude on the need to build a status vector. We propose an algorithm for efficient outlier detection that builds an identity chart of the patterns using the past data based on their curve fitting information. It detects the functional units of the patterns without apriori knowledge with the intent to learn its structure and to reconstruct the sequence of events described by the signal. On top of statistical elements, each pattern is allotted a characteristics chart. This pattern identity enables fast pattern matching across the data. The extracted features allow classification with regular clustering methods like support vector machines (SVM). The algorithm has been tested and evaluated using real satellite telemetry data. The outcome and performance show promising results for faster anomaly prediction.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Bouleau, Fabien
SCHOMMER, Christoph  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Langue du document :
Anglais
Titre :
Finding Outliers in Satellite Patterns by Learning Pattern Identities
Date de publication/diffusion :
janvier 2014
Nom de la manifestation :
6th International Conference on Agents and Artificial Intelligence (ICAART)
Organisateur de la manifestation :
University of Angers, France
Lieu de la manifestation :
Angers, France
Date de la manifestation :
March 6-8, 2014
Sur invitation :
Oui
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings "6th International Conference on Agents an Artificial Intelligence"
Editeur scientifique :
Filipe, Joacquim
Fred, Ana
Peer reviewed :
Peer reviewed
Intitulé du projet de recherche :
SPACE
Organisme subsidiant :
University of Luxembourg, ILIAS Research Laboratory
Disponible sur ORBilu :
depuis le 15 avril 2014

Statistiques


Nombre de vues
276 (dont 21 Unilu)
Nombre de téléchargements
805 (dont 11 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu