Bojowald M., Kotov A., Strobl T. Lie algebroid morphisms, Poisson sigma models, and off-sheff closed gauge symmetries. J. Geom. Phys. 2005, 54(4):400-426.
Sati H., Schreiber U., Stasheff J. L∞-algebra connections and applications to String- and Chern-Simons n-transport. Quantum field theory 2009, 303-424. Birkhäuser, Basel.
Shoikhet B. An explicit construction of the Quillen homotopical category of dg Lie algebras arxiv:0706.1333.
Alexandrov M., Kontsevich M., Schwarz A., Zaboronsky O. The geometry of the master equation and topological quantum field theory. Internat. J. Modern Phys. A 1997, 12(7):1405-1429.
Ševera P. Some title containing the words "homotopy" and "symplectic". Trav. Math. 2005, XVI. e.g. this one, Univ. Luxemb., Luxembourg.
Vitagliano L. On the strong homotopy Lie-Rinehart algebra of a Foliation arxiv:1204.2467.
Baez J.C., Crans A.S. Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ. 2004, 12:492-538.
Khudaverdyan D., Mandal A., Poncin N. Higher categorified algebras versus bounded homotopy algebras. Theory Appl. Categ. 2011, 25(10):251-275.
Lada T., Stasheff J. Introduction to SH Lie algebras for physicists. Internat. J. Theoret. Phys. 1993, 32(7):1087-1103.
Sheng Y., Zhu C. Higher extensions of Lie algebroids and applications to Courant algebroids arxiv:11035920v2.
Mackenzie K.C.H. General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society. Lecture Note Series 2005, vol. 213. Cambridge University Press.
Ammar M., Poncin N. Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. Ann. Inst. Fourier (Grenoble) 2010, 60(1):355-387.
Manin Y. Gauge Field Theory and Complex Geometry. Grundlehren der Mathematischen Wissenschaften 1988, vol. 289. Springer-Verlag, Berlin.
Batchelor M. Two approaches to supermanifolds. Trans. Amer. Math. Soc. 1980, 258(1):257-270.
Nestruev J. Smooth Manifolds and Observables. Graduate Texts in Mathematics 2003, vol. 220. Springer-Verlag.
Giachetta G., Mangiarotti L., Sardanashvily G. Geometric and Algebraic Topological Methods in Quantum Mechanics 2005, World Scientific.
Roytenberg D. On the structure of graded symplectic supermanifolds and Courant algebroids. Contemp. Math. 2002, 315:169-185.
Crainic M., Moerdijk I. Deformations of Lie brackets: cohomological aspects. J. Eur. Math. Soc. 2008, 10(4):1037-1059.
Abad C.A., Crainic M. Representations up to homotopy of Lie algebroids (English summary). J. Reine Angew. Math. 2012, 663:91-126.
Voronov T. Q-manifolds and higher analogs of Lie algebroids. AIP Conf. Proc. 2010, vol. 1307:191-202. Amer. Inst. Phys., Melville, NY.
Voronov T. Higher derived brackets for arbitrary derivations. Trav. Math. 2005, XVI:163-186.
Grabowski J., Khudaverdyan D., Poncin N. Loday algebroids and their supergeometric interpretation arxiv:1103.5852.
Higgins P.J., Mackenzie K.C.H. Algebraic constructions in the category of Lie algebroids. J. Algebra 1990, 129:194-230.
Schuhmacher F. Deformation of L∞-algebras arxiv:math/0405485.
Loday J.-L., Valette B. Algebraic Operads, Draft 2013.
Abraham R., Marsden J.E., Ratiu T. Manifolds, Tensor Analysis, and Applications. Global Analysis Pure and Applied: Series B 1983, vol. 2. Addison-Wesley Publishing Co., Reading, Mass.
Bkouche R. Idéaux mous d'un anneau commutatif, applications aux anneaux de fonctions. C. R. Acad. Sci. Paris 1965, 260:6496-6498.