[en] We propose a discretization scheme where the spline spaces used for the geometry and the field variables can be chosen independently in spline-based FEM. he method is thus
applicable to arbitrary domains with spline representation. (2) It is possible to flexibly choose between different spline spaces with different properties to better represent the solution of the PDE, e.g. the
continuity of the solution field. (3) Refinement operations by knot insertion and degree elevation
are performed directly on the spline space of the solution field, independently of the spline space of the geometry of the domain, i.e. the parameterization of the given geometry is not altered during
the refinement process. Hence, the initial design can be optimized in the
subsequent shape optimization stage without constraining the geometry discretization space to conform to the field approximation space.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Xu, Gang
Atroshchenko, Elena
BORDAS, Stéphane ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Langue du document :
Anglais
Titre :
GEOMETRY-INDEPENDENT FIELD APPROXIMATION FOR SPLINE-BASED FINITE ELEMENT METHODS
Date de publication/diffusion :
juillet 2014
Nom de la manifestation :
11th World Congress in Computational Mechanics
Organisateur de la manifestation :
CIMNE
Lieu de la manifestation :
Barcelona, Espagne
Date de la manifestation :
20-07-2014 to 25-07-2014
Sur invitation :
Oui
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 11th World Congress in Computational Mechanics