Thèse postdoctorale et autres thèses (Mémoires et thèses)
Meshless methods for shear-deformable beams and plates based on mixed weak forms
HALE, Jack
2013
 

Documents


Texte intégral
jack_hale_phd_final_08082013.pdf
Postprint Éditeur (16.23 MB)
Télécharger

The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Thin structural theories such as the shear-deformable Timoshenko beam and Reissner-Mindlin plate theories have seen wide use throughout engineering practice to simulate the response of structures with planar dimensions far larger than their thickness dimension. Meshless methods have been applied to construct numerical methods to solve the shear deformable theories. Similarly to the finite element method, meshless methods must be carefully designed to over- come the well-known shear-locking problem. Many successful treatments of shear-locking in the finite element literature are constructed through the application of a mixed weak form. In the mixed weak form the shear stresses are treated as an independent variational quantity in addition to the usual displacement variables. We introduce a novel hybrid meshless-finite element formulation for the Timoshenko beam problem that converges to the stable First-order/zero-order finite element method in the local limit when using maximum entropy meshless basis functions. The resulting formulation is free from the effects shear-locking. We then consider the Reissner-Mindlin plate problem. The shear stresses can be identified as a vector field belonging to the Sobelov space with square integrable rotation, suggesting the use of rotated Raviart-Thomas-Nedelec elements of lowest-order for discretising the shear stress field. This novel formulation is again free from the effects of shear-locking. Finally we consider the construction of a generalised displacement method where the shear stresses are eliminated prior to the solution of the final linear system of equations. We implement an existing technique in the literature for the Stokes problem called the nodal volume averaging technique. To ensure stability we split the shear energy between a part calculated using the displacement variables and the mixed variables resulting in a stabilised weak form. The method then satisfies the stability conditions resulting in a formulation that is free from the effects of shear-locking.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Engineering Research Unit
Langue du document :
Anglais
Titre :
Meshless methods for shear-deformable beams and plates based on mixed weak forms
Date de soutenance :
01 juillet 2013
Nombre de pages :
241
Institution :
Imperial College London, London, Royaume-Uni
Intitulé du diplôme :
Doctor of Philosophy of Imperial College London
Promoteur :
Baiz, Pedro M.
Président du jury :
Augarde, Charles
Membre du jury :
Cotter, Colin
Focus Area :
Computational Sciences
Organisme subsidiant :
Imperial College London/EPSRC
Disponible sur ORBilu :
depuis le 26 novembre 2013

Statistiques


Nombre de vues
660 (dont 72 Unilu)
Nombre de téléchargements
535 (dont 38 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu