Reference : Tame Galois realizations of $ GL_2(\Bbb F_l)$ over $\Bbb Q$ |
Scientific journals : Article | |||
Physical, chemical, mathematical & earth Sciences : Mathematics | |||
http://hdl.handle.net/10993/11846 | |||
Tame Galois realizations of $ GL_2(\Bbb F_l)$ over $\Bbb Q$ | |
English | |
Arias De Reyna Dominguez, Sara ![]() | |
Vila, Núria [University of Barcelona > d’Àlgebra i Geometria] | |
2009 | |
Journal of Number Theory | |
129 | |
5 | |
1056--1065 | |
Yes | |
International | |
0022-314X | |
[en] Tame ramification ; Galois extension ; Supersingular elliptic curve | |
[en] This paper concerns the tame inverse Galois problem. For each prime number l, we construct
infinitely many semistable elliptic curves over Q with good supersingular reduction at l. The Galois action on the l-torsion points of these elliptic curves provides tame Galois realizations of GL_2(F_l) over Q. | |
Researchers | |
http://hdl.handle.net/10993/11846 | |
10.1016/j.jnt.2008.09.020 | |
2516972 (2010c:11065) |
File(s) associated to this reference | ||||||||||||||
Fulltext file(s):
| ||||||||||||||
All documents in ORBilu are protected by a user license.