Abstract :
[en] This article is the second part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem.
This part is concerned with symplectic Galois representations having a huge residual image, by which we mean that a symplectic group of full dimension over the prime field is contained up to conjugation. We prove a classification result on those subgroups of a general symplectic group over a finite field that contain a nontrivial transvection. Translating this group theoretic result into the language of symplectic representations whose image contains a nontrivial transvection, these fall into three very simply describable classes: the reducible ones, the induced ones and those with huge image. Using the idea of an (n,p)-group of Khare, Larsen and Savin we give simple conditions under which a symplectic Galois representation with coefficients in a finite field has a huge image. Finally, we combine this classification result with the main result of the first part to obtain a strenghtened application to the inverse Galois problem.
Scopus citations®
without self-citations
3