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Abstract

This article is the second part of a series of three articles about compatible systems of sym-
plectic Galois representations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge residual image,
by which we mean that a symplectic group of full dimension over the prime field is contained up
to conjugation. We prove a classification result on those subgroups of a general symplectic group
over a finite field that contain a nontrivial transvection. Translating this group theoretic result into
the language of symplectic representations whose image contains a nontrivial transvection, these
fall into three very simply describable classes: the reducible ones, the induced ones and those
with huge image. Using the idea of an (n, p)-group of Khare, Larsen and Savin we give simple
conditions under which a symplectic Galois representation with coefficients in a finite field has a
huge image. Finally, we combine this classification result with the main result of the first part to
obtain a strenghtened application to the inverse Galois problem.

MSC (2010): 11F80 (Galois representations); 20G14 (Linear algebraic groups over finite
fields), 12F12 (Inverse Galois theory).

1 Introduction

This article is the second of a series of three about compatible systems of symplectic Galois repres-
entations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge image: For a prime £,
a finite subgroup G' C GSp,,(F,) is called huge if it contains a conjugate (in GSp,,(F;)) of Sp,, (Fy).
By Corollary [I.3|below this notion is the same as the one introduced in Part I [AdDW13]].
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Whereas the classification of the finite subgroups of Sp,,(IF) appears very complicated to us, it
turns out that the finite subgroups containing a nontrivial transvection can be very cleanly classified
into three classes, one of which is that of huge subgroups. This is the main group theoretic result
of this article (see Theorem [I.1| below). Translating this group theoretic result into the language of
symplectic representations whose image contains a nontrivial transvection, these also fall into three
very simply describable classes: the reducible ones, the induced ones and those with huge image (see
Corollary [1.2)).

Using the idea of an (n, p)-group of [KLSO08] (i.e. of a maximally induced place of order p, in the
terminology of Part I), some number theory allows us to give very simple conditions under which a
symplectic Galois representation with coefficients in IFy has huge image (see Theorembelow).

This second part is independent of the first, except for Corollary which combines the main
results of Part I [AdDW13]], and the present Part II. In Part III [AdDSW13]] written in collaboration
with Sug Woo Shin, a compatible system satisfying the assumptions of Corollary [I.6]is constructed.

Statement of the results

In order to fix terminology, we recall some standard definitions. Let K be a field. An n-dimensional
K-vector space V' equipped with a symplectic form (i.e. nonsingular and alternating), denoted by
(v,w) = vew forv,w € V, is called a symplectic K-space. A K-subspace W C V is called a
symplectic K-subspace if the restriction of (v, w) to W x W is nonsingular (hence, symplectic). The
general symplectic group GSp(V, (-,-)) =: GSp(V') consists of those A € GL(V") such that there is
a € K*, the multiplier (or similitude factor) of A, such that we have (Av) e (Aw) = a(v e w) for all
v,w € V. The multiplier of A is denoted by m(A). The symplectic group Sp(V, (-,-)) =: Sp(V) is
the subgroup of GSp(V') of elements with multiplier 1. An element 7 € GL(V) is a transvection if
T —idy has rank 1, i.e. if 7 fixes a hyperplane pointwisely, and there is a line U such that 7(v) —v € U
for all v € V. The fixed hyperplane is called the axis of 7 and the line U is the centre (or the direction).
We will consider the identity as a “trivial transvection”. Any transvection has determinant 1. A
symplectic transvection is a transvection in Sp(V"). Any symplectic transvection has the form

Ty € Sp(V) : u = u+ Nu,v)v

with direction vector v € V and parameter \ € K (see e.g. [Art57], pp. 137-138).
Our classification result on subgroups of general symplectic groups containing a nontrivial trans-

vection is the following.

Theorem 1.1. Let K be a finite field of characteristic at least 5 and V' a symplectic K-vector space of
dimension n. Then any subgroup G of GSp(V') which contains a nontrivial symplectic transvection

satisfies one of the following assertions:

1. There is a proper K-subspace S C V such that G(S) = S.



2. There are nonsingular symplectic K-subspaces S; C V with i = 1,...,h of dimension m for
some m < n such that' V = @?:1 S; and for all g € G there is a permutation o, € Symy,
(the symmetric group on {1,...,h}) with g(S;) = S, (). Moreover, the action of G on the set
{S1, ..., Sk} thus defined is transitive.

3. There is a subfield L of K such that the subgroup generated by the symplectic transvections of G is
conjugated (in GSp(V)) to Sp,,(L).

The main purpose Section [2]is to prove this theorem. For our application to Galois representations

we provide the following representation theoretic reformulation of Theorem [I.1]

Corollary 1.2. Let ¢ be a prime at least 5, let I' be a compact topological group and

a continuous representation (for the discrete topology on F;). Assume that the image of p contains a

nontrivial transvection. Then one of the following assertions holds:
1. pis reducible.

2. Thereis a closed subgroup T" C T of finite index h | n and a representation p' : T — GSp,, /h(Fg)
such that p = Indk, (p').

3. There is a finite field L of characteristic ¢ such that the subgroup generated by the symplectic
transvections in the image of p is conjugated (in GSp,,(F¢)) to Sp,,(L); in particular, the image is
huge.

The following corollary shows that the definition of a huge subgroup of GSp,, (F;), which we give
in Part I [AdDW13]], coincides with the simpler definition stated above.

Corollary 1.3. Let K be a finite field of characteristic £ > 5, V a symplectic K-vector space of
dimension n, and G a subgroup of GSp(V') which contains a symplectic transvection. Then the

following are equivalent:
(i) G is huge.
(ii) G contains a subgroup which is conjugate (in GSp(V')) to Sp,,(F).

(iii) There is a subfield L of K such that the subgroup generated by the symplectic transvections of
G is conjugated (in GSp(V)) to Sp,,(L).

Combining our group theoretic results with (7, p)-groups, introduced by [KLSO08]], some number

theory allows us to prove the following theorem. Before stating it, let us collect some notation.



Set-up 1.4. Let n, N € N be integers with n even and N = Ny - N with gcd(N1, No) = 1. Let
Lg be the compositum of all number fields of degree < n /2, which are ramified at most at the primes
dividing No (which is a number field). Let q be a prime which is completely split in Lg, and let p be a
prime dividing ¢ — 1 but not dividing q2 — 1, and p = 1 (mod n).

Theorem 1.5. Assume Set-up[l.4} Let k € N, {  p, q be a prime such that { > kn!+1and ( { N. Let
Xq : Gon — @Z be a character satisfying the assumptions of Lemma and X, the composition of
Xq with the reduction map Zy — Fy. Let @ : G, — EX be an unramified character.
Let
p: Gg — GSp,,(Fy)

be a Galois representation, ramified only at the primes dividing N qf, satisfying that a twist by some
power of the cyclotomic character is regular in the sense of Definition [3.2] with tame inertia weights
at most k, and such that (1) Resggq (p) = Indggzn (Xq) ® @, (2) the image of p contains a nontrivial
transvection and (3) for all primes {1 dividing N1, the image under p of 1;,, the inertia group at {1,
has order prime to n!.

Then the image of p is a huge subgroup of GSp,,(Fy).

Combining Theorem [I.5] with the results of Part I [AdDW13] of this series yields the following
corollary.

Corollary 1.6. Assume Set-up Let pe = (pa)x (where X runs through the finite places of a
number field L) be an n-dimensional a. e. absolutely irreducible a. e. symplectic compatible system,
as defined in Part I ([AdDW13)]), for the base field Q, which satisfies the following assumptions:

o For all places X\ the representation p), is unramified outside N ql, where { is the rational prime
below .

o There are a € 7Z and k € N such that, for all but possibly finitely many places X of L, the
reduction mod X of xj @ py is regular in the sense of Definition with tame inertia weights

at most k.
o The multiplier of the system is a finite order character times a power of the cyclotomic character.

!, the

e For all primes { not belonging to a density zero set of rational primes, and for each \
residual representation p, contains a nontrivial transvection in its image.
G G =X .
e For all places ) not above q one has Rengq (px) = InngZn (Xq) ® @, where o : G, — Ly is

some unramified character and X : GQq,L — 7™ is a character such that its composite with the
embedding 7" @Z given by X\ satisfies the assumptions of Lemma)3. 1| for all primes { { pq.

In the terminology of Part I, q is called a maximally induced place of order p.

e For all primes (1 dividing Ny and for all but possibly finitely many places X, the group py(Iy,)

has order prime to n! (where 1, denotes the inertia group at {1).
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Then we obtain:

(a) For all primes { not belonging to a density zero set of rational primes, and for each \|{, the image

of the residual representation py, is a huge subgroup of GSp,, (Fy).

(b) Foranyd | p—;l there exists a set Ly of rational primes ¢ of positive density such that for all £ € Lg
there is a place )\ of L above { satisfying that the image ofﬁg’\roj is PGSp,,(F,a) or PSp,,(Fa).

The proofs of Theorem [I.5]and Corollary 1.6 are given in Section [3]
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2 Symplectic representations containing a transvection

In this section our group theoretic results is proved. This part was inspired by the work of Mitchell on
the classification of subgroups of classical groups. In an attempt to generalise Theorem 1 of [Mit14] to
arbitrary dimension, one of us (S. A.-d.-R.) came up with a precise strategy for Theorem|[[.] Several

ideas and some notation are borrowed from [[LZ82]].

2.1 Symplectic transvections in subgroups

Recall that the full symplectic group is generated by all its transvections. The main idea in this part is
to identify the subgroups of the general symplectic group containing a transvection by the centres of
the transvections in the subgroup.

Let K be a finite field of characteristic £ and V' a symplectic K-vector space of dimension 7.
Let G be a subgroup of GSp(V'). A main difficulty in this part stems from the fact that K need not
be a prime field, whence the set of direction vectors of the transvections contained in G need not be
a K-vector space. Suppose, for example, that we want to deal with the subgroup G = Sp,,(L) of
Sp,,(K) for L a subfield of K. Then the directions of the transvections of G form the L-vector space
L™ contained in K. It is this what we have in mind when we introduce the term (L, G)-rational
subspace below. In order to do so, we set up some more notation.

Write £(G) for the set of 0 # v € V such that T,,[A\] € G for some A € K. More naturally, this
set should be considered as a subset of P(V'), the projective space consisting of the lines in V. We call



it the set of centres (or directions) of the symplectic transvections in G. For a given nonzero vector

v € V, define the parameter group of direction v in G as
Pu(G) :={X € K | T,[\ € G}.

The fact that T),(u) o T,(A) = T,,(p + ) shows that P, (G) is a subgroup of the additive group of K.
If K is a finite field of characteristic ¢, then P, () is a finite direct product of copies of Z/¢Z. Denote
the number of factors by rk,(G). Because of Py,(G) = %PU(G) for A € K*, it only depends on
the centre U := (v) i € L(G) C P(V), and we call it the rank of U in G, although we will not make
use of this in our argument.

We find it useful to consider the surjective map

(v,\)—=Ty |

®:V xK a {symplectic transvections in Sp(V")}.

The multiplicative group K> acts on V x K via z(v,)\) := (zv,2~2)\). Passing to the quotient

modulo this action yields a bijection

v, \) =Ty [

(V\{0} x K)/K* ( al {nontrivial symplectic transvections in Sp(V)}.

When we consider the first projection 7y : V' x K — V modulo the action of K™ we obtain
v (V\{0} x K)/K* — P(V),

which corresponds to sending a nontrivial transvection to its centre. Let TV be a K-subspace of V.

Then ® gives a bijection

—Ty

(W\{0} x K)/K* AT, {nontrivial symplectic transvections in Sp(V") with centre in W'}.

Let L be a subfield of K. We call an L-vector space Wy C V' L-rational if dimg W = dimp Wr,
with Wy := (Wp)k and (-, -) restricted to W, x W, takes values in L. An L-vector space W C V

is called (L, G)-rational if Wy, is L-rational and ® induces a bijection

—Ty[A]

(W \{0}x L)/L* LG nalla N1 {nontrivial sympl. transvections in Sp(V") with centre in Wi }.

Note that (W, \ {0} x L)/L* is naturally a subset of (Wg \ {0} x K)/K*. A K-subspace W C V/
is called (L, G)-rationalisable if there exists an (L, G)-rational Wy, with W = W. We speak of
an (L, G)-rational symplectic subspace W7, if it is (L, G)-rational and symplectic in the sense that
the restricted pairing is non-degenerate on Wp,. Let Hy, and I}, be two (L, G)-rational symplectic
subspaces of V. We say that Hy, and Iy, are (L, G)-linked if there is 0 # h € Hy and 0 # w € I,
such that h +w € L(G).



2.2 Strategy

Now that we have set up all notation, we will describe the strategy behind the proof of Theorem|I.1]
as a service for the reader.

If one is not in case|l} then there are ‘many’ transvections in GG, as otherwise the K -span of £(G)
would be a proper subspace of V' stabilised by (G. The presence of ‘many’ transvection is used first in
order to show the existence of a subfield L C K and an (L, G)-rational symplectic plane H;, C V.
For this it is necessary to replace G' by one of its conjugates inside GSp(V'). The main ingredient
for the existence of (L, G)-rational symplectic planes, which is treated in Section is Dickson’s
classification of the finite subgroups of PGLy(Fy).

The next main step is to show that two (L, G)-linked symplectic spaces in V' can be merged
into a single one. This is the main result of Section [2.5] The main input is a result of Wagner for
transvections in three dimensional vector spaces.

The merging results are applied to extend the (L, G)-rational symplectic plane further, using again
the existence of ‘many’ transvections. We obtain a maximal (L, G)-rational symplectic space I, C V
in the sense that £(G) C Ix U I3, which is proved in Section The proof of Theorem |1.1| can
be deduced from this (see Section because either I equals V, that is the huge image case, or

translating /x by elements of G gives the decomposition in case

2.3 Simple properties

We use the notation from the Introduction. In this subsection we list some simple lemmas illustrating

and characterising the definitions made above.
Lemma 2.1. Let v € L(G). Then (v)y, is an (L, G)-rational line if and only if P,(G) = L.

Proof. This follows immediately from that fact that all transvections with centre (v) g can be written
uniquely as 7),[A] for some \ € K. O

Lemma 2.2. Let W, C V be an (L, G)-rational space and Uy, an L-vector subspace of Wp. Then
U is also (L, G)-rational.

Proof. We first give two general statements about L-rational subspaces. Let u1, ..., uq be an L-basis
of Uy, and extend it by w,...,we to an L-basis of Wr. As W} is L-rational, the chosen vectors
remain linearly independent over K, and, hence, Uy, is L-rational. Moreover, we see, e.g. by writing
down elements in the chosen basis, that W N U = Uy..

It is clear that ® sends elements in (U, x L)/L* to symplectic transvections in G with centres
in Ug. Conversely, let T;,[\] be such a transvection. As W7, is (L, G)-rational, T,,[\] = T[] with
some v € Wy and p € L. Due to Wy, N Ux = Up, we have u € Uy, and the tuple (u, p) lies in
UL x L. ]

Lemma 2.3. Let Wy, C V be an L-rational subspace of V. Then the following assertions are equi-

valent:



(i) Wy is (L, G)-rational.

(ii) (a) Tw, [L] :={Tu[\| | X € L, ve Wi} C G and

(b) foreach U € L(G) C P(V) withU C W there is auw € U N W, such that P,(G) = L
(i.e. (u)p, is an (L, G)-rational line contained in U by Lemma 2.1)).

Proof. ’ = :’ Note that is clear. For , let U € £(G) with U C Wg. Hence, there is
u € Uand XA € K* with T,[\] € G. As Wy is (L, G)-rational, we may assume that u € W, and
A € L. Lemma[2.2]implies that (u), is an (L, G)-rational line.

(i) = i) Denote by ¢ the injection (W, \ {0} x L)/L* — (Wg \ {0} x K)/K*. By (iia),
the image of ® o ¢ lies in G. It remains to prove the surjectivity of this map onto the symplectic
transvections of G with centres in Wx. Let T;,[A] be one such. Take U = (v) k. By (iib), there is
vo € U such that U, = (vg)r, € W is an (L, G)-rational line. In particular, T,,[\] = T, [p] with
some p € L, finishing the proof. 0

Lemma 2.4. Let A € GSp(V) with multiplier o € K*. Then AT,[\JA™" = Ta,[2]. In particular,
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the notion of (L, G)-rationality is not stable under conjugation.

Proof. For all w € V, AT,NA Y (w) = A(A7'w + AMA 1w e v)v) = w + AN(A 1w o v)Av.
Since A has multiplier o, w ¢ Av = a(A~1w e v), hence AT, [NA™}(w) = w + %(w o Av)Av =

Tao[2](w). O
Lemma 2.5. The group G maps L(G) into itself.

Proof. Letg € Gandw € L(G), say Ty[A] € G. Then by Lemmawe have gTy [N g~ ! = Tgw[g],
where « is the multiplier of g. Hence, g(w) € L(G). O

The following lemma shows that the natural projection yields a bijection between transvections in
the symplectic group and their images in the projective symplectic group.

Lemma 2.6. Let V be a symplectic K-vector space, 0 # u1,us € V. If Ty, [M] Tuy[N2] € {a-1d :
a € K*}, then Ty, [M] = Tu,[ A2

Proof. Assume T, [\] "' Ty,[Xo] = ald. Then for all v € V, Ty, [A2](v) — Tuy [M](av) = 0. In
particular, taking v = wuy, Ty, [Ao|(u1) — Ty, [M](au1) = up + Ao(ug ® ug)us — auy = 0, hence
either u; and wuo are linearly dependent or ¢ = 1 (thus both transvections coincide). Assume then
that us = bu; for some b € K*. Then for all v € V we have Ty, [\2](v) — Ty, [A1](av) =
v+ Aob?(veur)uy — av — Ma(v e uy)uy = (a — 1)v + (Aab? — a;)(v @ ug)u; = 0. Choosing v

linearly independent from u;, we obtain @ = 1, as we wished to prove. 0



2.4 Existence of (L, G)-rational symplectic planes

Let, as before, K be a finite field of characteristic ¢, V' a n-dimensional symplectic K -vector space
and G C GSp(V') a subgroup. We will now prove the existence of (L, G)-rational symplectic planes
if there are two transvections in G with nonorthogonal directions.

Note that any additive subgroup  C K can appear as a parameter group of a direction. Just take
G to be the subgroup of GSp(V') generated by the transvections in one fixed direction with parameters
in H. It might seem surprising that the existence of two nonorthogonal centres forces the parameter
group to be the additive group of a subfield L of K (up to multiplication by a fixed scalar). This is the
contents of Proposition [2.T1] which is one of the main ingredients for this article. This proposition,
in turn, is based on Proposition going back to Mitchell (cf. [Mitl1]]). To make this exposition
self-contained we also include a proof of it, which essentially relies on Dickson’s classification of the
finite subgroups of PGLy(FFy). Recall that an elation is the image in PGL(V) of a transvection in
GL(V).

Proposition 2.7. Let V be a 2-dimensional K-vector space with basis {e1,e2} andT' C PGL(V) a
subgroup that contains two nontrivial elations whose centers Uy and Us are different. Let £ be the
order of an £-Sylow subgroup of T'.

Then K contains a subfield L with {™ elements. Moreover, there exists A € PGLo(K) such that
AU = (e1)k, AUy = {(e2) ., and AT A~V is either PGL(VL) or PSL(VL), where Vi, = {(e1, e2) L.

Proof. Since there are two elations 7, and 79 with independent directions U; and Us, Dickson’s clas-
sification of subgroups of PGLa () (Section 260 of [Dic58]) implies that there is B € PGLy(K)
such that BT B~ ! is either PGL(V7) or PSL(V7), where L is a subfield of K with ™ elements. By
Lemma the direction of Br; B~! is BU; for i = 1,2 and the lines BU; are of the form (d;)
with d; € Vp fori = 1,2. As PSL(Vy) acts transitively on V7, there is C € PSL(Vy) such that
CU; = (e1)kx and CUy = (e2) k. Setting A := C'B yields the proposition. O

Although the preceding proposition is quite simple, the very important consequence it has is that
the conjugated elations A7; A~! both have direction vectors that can be defined over the same L-

rational plane.

Lemma 2.8. Let V be a 2-dimensional K -vector space, G C GL(V') containing two transvections
with linearly independent directions Uy and Us. Let £ be the order of any £-Sylow subgroup of G.

Then K contains a subfield L with {™ elements and there are A € GL(V) and an (L, AGA™!)-
rational plane Vi, C V. Moreover, A can be chosen such that AU; = U, for i = 1, 2. Furthermore, if
uy € Uy and ug € Uy are such that u; @ ug € L™, then Vi, can be chosen to be (uy,us)r.

Proof. We apply Proposition with e; = wuj, ea = ug, and I the image of G in PGL(V), and
obtain A € GL(V) (any lift of the matrix provided by the proposition) such that AT A~! equals
PSL(Vy) or PGL(Vy) for the L-rational plane V;, = (uy,us)r €V, and AU; = U, for i = 1, 2. For



PSL(Vy) and PGL(V},) it is true that the elations contained in them are precisely the images of T, [\]
forv e Vyand A € L.

First, we know that all such T,[)\] are contained in SL(V7,) and, thus, in AGA~! (since AT A1
is PSL(VL) or PGL(VL)). Second, by Lemma [2.6|the image of T,,[\] in AT A~! has a unique lift to
a transvection in SL(V) € AGA™1, namely T, [)]. This proves that the transvections of AGA™! are
precisely the T},[\] for v € Vi and A € L. Hence, V7, is an (L, AG A~!)-rational plane. O

Lemma 2.9. Let Uy, Us € L(G) be such that H = Uy @ Uy is a symplectic plane in V. By Gy we
denote the subgroup {g € G | g(H) C H} and by G| the restrictions of the elements of G to H.
Then L(G|g) C L(G) (under the inclusion P(H) C P(V)).

Proof. Let 7; € G be transvections with directions U; for ¢ = 1,2. Clearly, 71, » € Gy and their
restrictions to H are symplectic transvections with the same directions. Consequently, Lemma [2.§|
provides us with A € GL(H) and an (L, AGA™!)-rational plane H; C H.

Let U € L(G|g). This means that there is g € Gy such that g|y is a transvection with direc-
tion U, so that Ag|yA~! is a transvection in AG|yA~! with direction AU by Lemma As Hj,
is (L, AG|y A~1)-rational, all transvections T,,[\] for v € Hy and A € L lie in AG|gA~!, whence
AG|gA~! contains SL(H[). Consequently, there is h € AG|yA~! such that hAU = AU;. But
A"'hA € G|g, whence there is v € Gq with restriction to H equal to A~'hA. As yH C H,
it follows that yU = v|gU = A~'hAU = Uj. Now, v~ '717v is a transvection in G with centre
y~1U; = U, showing U € L(G). O

Corollary 2.10. Let Uy, Us € L(G) be such that H = Uy & Uy is a symplectic plane in V. By Gy we
denote the subgroup {g € G | g(H) C H} and by G|y the restrictions of the elements of Gy to H.

Then the transvections of G| are the restrictions to H of the transvections of G with centre in H.

Proof. Let T be the subgroup of GG generated by the transvections of G with centre in H. We can
naturally identify 7" with T'| 7. Let U be the subgroup of G|y generated by the transvections of G|g.
We have that 7|y C U.

Applying Lemma to the K -vector space H and the subgroup U C GL(H), there exists a
subfield L C K, and an L-rational plane H, such that U is conjugate to SL(H,), hence U ~ SLa(L).
Applying Lemmato the K -vector space H and the subgroup T'|;7, we obtain a subfield L' C K,
and an L’-rational plane H, such that T'|y is conjugate to SL(H/), hence H ~ SLy(L’). But
L(T|u) =L(G)NH = L(G|x) = L(U) by Lemma[2.9] whence L = L’ and the cardinalities of U
and T'| g coincide. Therefore they are equal. O

Proposition 2.11. Let Uy, Us € L(G) C P(V') which are not orthogonal. Then there exist a subfield
L < K, A € GSp(V), and an L-rational symplectic plane Hy, such that AU, C Hg, AUy C Hg
and such that Hy, is (L, AG A~Y)-rational. Moreover, if we fix uy € Uy, us € Us such that uy e ug €
L*, we can choose H, = (u1,u2) 1, and A satisfying AU, = Uy, AUy = Us.
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Proof. Let H = Uy ®U, and note that this is a symplectic plane. Define Gy and G| as in Lemma
Lemma provides us with B € GL(H) such that BU; = U; for i = 1,2 and such that H;, =
(u1,us)r, is an (L, BG|yB~!)-rational plane. We choose A € GSp(V) such that AH C H and
Alg = B (this is possible as any symplectic basis of H can be extended to a symplectic basis of V).
We want to prove that H, is an (L, AG A~!)-rational symplectic plane in V.

And, indeed, by Corollary the nontrivial transvections of AGA~! with direction in H
coincide with the nontrivial transvections of BG|yB~!, which in turn correspond bijectively to
(HL\ {0} x L)/L.

O

Note that Theorem |1.1|is independent of conjugating G inside Sp(V'). Hence, we will henceforth
work with (L, G)-rational symplectic spaces (instead of (L, AGA~!)-rational ones).

Corollary 2.12. (a) Let Hy, be an L-rational plane which contains an (L, G)-rational line Uy 1, as
well as an L-rational line Us 1, not orthogonal to Uy 1, with Uy i € L(G).

Then Hp, is an (L, G)-rational symplectic plane.

(b) Let Uy 1, = (u1)r, be an (L, G)-rational line and Uy = (u2) g € L(G) such that u; e ug € L*.

Then (u1,u2)y, is an (L, G)-rational symplectic plane.

Proof. @) Fix u; € Uy, and ug € Uy, such that u; e ug = 1, and call Wy, = (uy,u2)r. Apply
Proposition2.11} we get L C K and A € GSp(V') such that (AU} 1)k = (u1) i, AUz = (ug)x and
Wy, is (L, AGA_I)-rational. Let a1, as € K* be such that Au; = ajuy and Aus = asus. The proof
will follow three steps: we will first see that P,,(G) = L, then we will see that H, satisfies Lemma
and finally we will see that H, satisfies Lemma [2.3] (iib)).

Let o be the multiplier of A. First note the following equality between «, a1 and as:

1 1
1 =uj euy = —(Aus @ Aug) = —(a1uq ® aguy) = naz
o o

Recall that Pay (G) = =3Py (G), and, from Lemma 2.4|it follows that P4,(AGA™) = 1P, (G).

On the one hand, since Uy 1, is (L, G)-rational and u; € U 1, we know that P, (G) = L by
Lemma 2.1} On the other hand, since (u1)y, is (L, AGA™!)-rational, Py, (AGA™!) = L, hence
Pu,(G) = % L We thus have 5 € L. Moreover, since (uz), is (L, AGA~")-rational (e.g. using

Lemma | we have that PUQ(AGA 1) = L, hence P, (G) = ;‘—gL = ‘f—fL = %%L = L. This
proves that (us), is (L, G)-rational by Lemma 2.1}

Next we will see that Ty, [L] C G. Let by,by € L with by # 0 and A € L*. Consider the
transvection T}, +byu, [A]. We want to prove that it belongs to G. We compute

A A b2a2\

ATblul+b2u2 [)‘]Ail = TA(b1u1+b2u2)[a] - Tb1a1u1+b2a2uz[a] = Tu _,_22‘12
101

J:

wl g
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Note that since {1 = % € L and since Wy, = (uj,ug)y is (L, AGA™!)-rational, it follows that
ATy uy +byus [N AT € AGA™L, and therefore Ty, u, +byu,[\] € G- Note that the same conclusion is
valid for by = 0 as (ug) 1, is (L, G)-rational.

Finally it remains to see that if U € £(G) N (HL)k, then there is u € U N Hy, with P, (G) = L.
Assume that U € L(G) N (HL) k. Since we have seen that (us)y, is (L, G)-rational, we can assume
that U # (ug) k. Therefore we can choose an element v € U with v = uy + bug, for some b € K.
It suffices to show that b € L. Let T;,[\] € G be a transvection with direction U. Then computing
AT,[NJA™! as above, we get that AT,[A\|A™! =T w22, [a%)‘] is a transvection with direction in
L(AGA™Y) N W, hence the (L, AGA~!)-rationality of 1WL implies that b € L.

@) follows from @) by observing that the condition u; ® ug € L* ensures that (uj, ug)y, is an

L-rational symplectic plane. O

The next corollary says that the translate of each vector in an (L, GG)-rational symplectic space by

some orthogonal vector w is the centre of a transvection if this is the case for one of them.

Corollary 2.13. Let H;, C V be an (L, G)-rational symplectic space. Let w € Hf( and 0 # h € Hy,
such that (h + w)g € L(G). Then (hy + w)y, is an (L, G)-rational line for all 0 # hy € Hf.

Proof. Assume first that H, is a plane. Let he Hywithheh=1 (hence Hy, = (h, iL)L). As <B>L
is an (L, G)-rational line and / e (b + w) = 1, it follows that (k, h + w), is an (L, G)-rational plane
by Corollary Consequently, for all 1 € L we have that (uh+ h+w), is an (L, G)-rational line.
Letnow 1 € L*. Then (uh+h+w)eh =y # 0, whence again by Corollary (uh+h+w,h)p
is an (L, G)-rational plane. Thus, for all v € L it follows that (uh + (v + 1)h 4+ w)y is an (L, G)-
rational line. In order to get rid of the condition p # 0, we exchange the roles of 4 and h, yielding the
statement for planes.

To extend it to any symplectic space Hy, note that, if h1, ho € Hj are nonzero elements, there
exists an element h € H7, such that hy oh #0, hoeh # (0. Namely, let le, iLQ be such that h; e iy £ 0,
hs ® hs = 0 (they exist because on Hp, the symplectic pairing is nondegenerate). If ho ® h1 # 0 or
hie fm # 0, we are done. Otherwise h= iLl + ﬁg satisfies the required condition.

Returning to the proof, if h; € Hy, is nonzero, take h € Hy, such that h e b % 0 and hy e h # 0.
First apply the Corollary to the plane (h, h) 7, yielding that h 4+ w is an (L, G)-rational line, and then
apply it to the plane <iz, h1) ., showing that hy 4+ w is an (L, G)-rational line, as required. O

In the next lemma it is important that the characteristic of K is greater than 2.

Lemma 2.14. Let Hy, be an (L, G)-rational symplectic space. Let h, heHp different from zero and
let w, € Hik such that w e € L* and h +w, h + o € L(G).

Then (w,w)y, is an (L, G)-rational symplectic plane.

Proof. By Corollary we have that (h + W), is an (L, G)-rational line. As (h + w) e (h+ W) =
wew € L*, by Corollary it follows that (w —w), is an (L, G)-rational line. Since (—h—w)g €
L(G), by Corollary we have that (—h 4+ w) is (L, G)-rational, and from (—h 4+ w) e (h+ w) =

12



wew € L* we conclude that (w—+w), is an (L, G)-rational line. As (w—1w0)e(w+w) = 2wew € L*,

we obtain that (w + w, w — W), = (w, W), is an (L, G)-rational symplectic plane, as claimed. ]

We now deduce that linking is an equivalence relation between mutually orthogonal spaces. Note

that reflexivity and symmetry are clear and only transitivity need be shown.

Lemma 2.15. Let Hy, 11, and Jy, be mutually orthogonal (L, G)-rational symplectic subspaces of V.
If Hy, and 1, are (L, G)-linked and also I1, and Jy, are (L, G)-linked, then so are Hy, and J..

Proof. By definition there exist nonzero hg € Hp, ig,i1 € I, and jo € J such that hg + ig € L(Q)
and i1 + jo € L(G). There are ho € Hy and ig € I, such that hg @ hg = 1 and ip ® ig = 1.

By Corollarywe have, in particular, that (ho + i) 1, (i + jo)z and (ﬁo + (ig + 10)), are
(L, G)-rational lines. As (ho + ig) ® (io + jo) = 1, by Corollaryalso (ho + (io + i0) + jo)1
is (L, G)-rational. Furthermore, due to (hg + (ig + i0)) ® (ho + (io + i0) + jo) = 1, it follows that
((ho — ho) + jo)1 is (L, G)-rational, whence Hy, and .Jy, are (L, G)-linked. O

2.5 Merging linked orthogonal (L, G)-rational symplectic subspaces

We continue using our assumptions: K is a finite field of characteristic at least 5, . C K a subfield,
V' a n-dimensional symplectic K -vector space, G C GSp(V') a subgroup. In the previous section
we established the existence of (L, G)-rational symplectic planes in many cases (after allowing a
conjugation of G inside GSp(V')). In this section we aim at merging (L, G)-linked (L, G)-rational
symplectic planes into (L, G)-rational symplectic subspaces.

It is important to remark that no new conjugation of G is required. The only conjugation that is

needed is the one from the previous section in order to have an (L, G)-rational plane to start from.

Lemma 2.16. Let Hy, and I, be two (L, G)-rational symplectic subspaces of V' which are (L,G)-
linked. Suppose that Hy, and Iy, are orthogonal to each other. Then all lines in Hy, ® Iy, are (L, G)-

rational.

Proof. The (L, G)-linkage implies the existence of hy € H, and wy € Iy, such that (h; + wi)x €
L(G). By Corollary (h + w1)y is an (L, G)-rational line for all h € H. The same reasoning
now gives that (h + w), is an (L, G)-rational line for all h € Hy, and all w € I. O

In view of Lemma [2.3] the above is (iia). In order to obtain (iib), we need to invoke a result of
Wagner.

Proposition 2.17. Let V' be a 3-dimensional vector space over a finite field K of characteristic { >
5, and let G C SL(V') be a group of transformations fixing a 1-dimensional vector space U. Let
Uy, Us, Us be three distinct centres of transvections in G such that U € Uy & Uy and U # Us. Then
(U ® Ug) N (U @ Us) is the centre of a transvection of G.
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Proof. This is Theorem 3.1 (a) of [Wag74]. It is stated in a different terminology from ours. But,
note that finite desarguian projective planes correspond to usual projective planes P(V'), where V is a
3-dimensional vector space over a finite field (see Section 1.4, 5 of [Dem97], p. 28), and collineations

of such planes correspond to linear maps (cf. Section 1.4, 10 of [Dem97], p. 31). O

Proposition 2.18. Ler U1,Us,Us € L(G) and W = Uy + Uy + Us. Assume dim W = 3, Uy and
Uy not orthogonal and let U be a line in W N W which is linearly independent from Us and is not
contained in Uy @ Us. Then (Uy @ Uy) N (U @ Us) is a line in L(G).

Proof. Fix transvections T; € G with centre U;, ¢ = 1,2,3. These transvections fix W; let H C
SL(W) be the group generated by the restrictions of the T} to W. The condition U C W+ guarantees
that the 7; fix U pointwise. Note that furthermore U # Us and U ¢ U; & U,. We can apply
Proposition and conclude that (U; @ Us) N (U @ Us) is the centre of a transvection 7" of H.
This transvection fixes the symplectic plane U; & Us. Call Tj the restriction of T’ to this plane. It is a
nontrivial transvection (since no line of U; & Us can be orthogonal to all U; ¢ Us). Hence by Lemma
2.9 the line (U @ Uz) N (U @ Us) belongs to L(G). O

We now deduce rationality statements from it.

Corollary 2.19. Let Hy, be an (L, G)-rational symplectic plane and Us and Uy be linearly independ-
ent lines not contained in Hy. Assume Uy C Hy @ Us is orthogonal to Hy and to Us and assume
that Us € L(G).

Then the intersection Hyi N (Us & Uy) = I for some line I, C Hy.

Proof. Choose two (L, G)-rational lines Uy 1, and Us 1, such that Hy, = Uy, @ Us . With U = Uy
we can apply Proposition in order to obtain that I := Hx N(Us@® Uy) is aline in £(G) contained
in Hg. As Hy, is (L, G)-rational, it follows that I is (L, G)-rationalisable. O

Corollary 2.20. Let H;, C V be an (L,G)-rational symplectic space. Let h +w € L(G) with
0+# h € Hi andw € Hy. Then h € L(G). In particular, (h)f is an (L, G)-rationalisable line, i.e.
there is i € K> such that ph € Hy,.

Proof. If necessary replacing Hy, by any (L, G)-rational plane contained in H,, we may without loss
of generality assume that H, is an (L, G)-rational plane. Let y := h+ w. If w = 0, the claim follows
from the (L, G)-rationality of H . Hence, we suppose w # 0. Then Us := (y) k is not contained in
H . Note that w is perpendicular to Us and to Hx, and w € Hy, @ (y) k. Hence, Corollary gives
that the intersection Hx N (Us @ (w) i) = (h) g is in L(G). O

Corollary 2.20] gives the rationalisability of a line. In order to actually find a direction vector for a
parameter in L, we need something extra to rigidify the situation. For this, we now take a second link
which is sufficiently different from the first link.
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Corollary 2.21. Let H;, C V be an (L, G)-rational symplectic space. Let 0 # he Hygandw e H [Jg
such that h+@ € L(G). Suppose that there are nonzero h € Hy, andw € His such that h+w € L(G)
and w e w € L*.

Then h € Hi.

Proof. By Corollary there is some 8 € K* such that Bh € Hj. We want to show § € L.
By Corollary we may assume that i e h # 0, more precisely, h o (,6%) = 1; and we have
furthermore that (h + w)y, is an (L, G)-rational line. By Corollary @, (h, Bh) L is an (L, G)-
rational symplectic plane contained in Hy,. Let ¢ := w e w € L*. We have

- - 1
(h+w)o(h+ﬁj):hoh+wow:B+c::u.

If £ = 0, then B € L and we are done. Assume p # 0. By Corollary (o) it follows that
(h + w, ' (h + )y, is an (L, G)-rational symplectic plane. Thus, (h + w + p~ (h + 0)), is
an (L, G)-rational line. By Corollary there is some v € K such that v(h + ,u_lﬁ) € Hp.
Consequently, v € L*, whence p € L, so that 5 € L. ]

The main result of this section is the following merging result.

Proposition 2.22. Let H;, and I}, be orthogonal (L, G)-rational symplectic subspaces of V that are
(L, G)-linked.
Then Hy, & Iy, is an (L, G)-rational symplectic subspace of V.

Proof. We use Lemma [2.3] Part (iia) follows directly from Lemma [2.16] We now show ({iib). Let
h+w € L(G) with nonzero h € Hy and w € Ik be given. Corollary 2.20]yields 41, € K* such
that b € Hy and vw € I1. Let h € Hy, with (uh) e h = 1, as well as & € I, with (vw) e & = 1.
Lemma tells us that i + w € £(G). Together with (vh) + (vw) € £(G), Corollary [2.21|yields
vh € Hy, whence vh +vw € Hy, @ Iy,. O

2.6 Extending (L, G)-rational spaces

We continue using the same notation as in the previous sections. Here, we will use the merging results

in order to extend (L, G)-rational symplectic spaces.

Proposition 2.23. Let Hy, be a nonzero (L, G)-rational symplectic subspace of V. Let nonzero h, he
Hy, w,w € Hi be such that h +w,h + @ € L(G) and w & i # 0.

Then there exist v, } € K> such that (cw, fw) 1, is an (L, G)-rational symplectic plane which is
(L, G)-linked with H,.

Proof. By Corollary we may and do assume by scaling h 4+ w that h € Hj. Furthermore, we
assume by scaling h + @ that w e w = 1. Then Corollary yields that h € Hy. We may appeal
to Lemma yielding that (w, W)y, is an (L, G)-rational plane. The (L, G)-link is just given by
h+w. O
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Corollary 2.24. Let Hy, be a non-zero (L, G)-rational symplectic subspace of V.. Let nonzero h, he
Hpy, w,w € H be such that h +w,h + o € L(G) and w & i # 0,

Then there is an (L, G)-rational symplectic subspace 11, of V containing Hy, and such that I =
(Hg, w, W) .

Proof. This follows directly from Propositions [2.23]and [2.22] O

Proposition 2.25. Assume (L(G))x = V. Let Hy, be a nonzero (L, G)-rational symplectic space.
Let0# v € L(G)\ (Hx UHi).
Then there is an (L, G)-rational symplectic space 11, containing Hy, such that v € I .

Proof. We write v = h +w withh € Hy andw € H [L( Note that both A and w are nonzero by
assumption. As (L(G))x = V, we may choose © € L(G) such that © @ w # 0. We again write
& = h+w with h € Hy and @ € Hp.

We, moreover, want to ensure that / # 0. If h = 0, then we proceed as follows. Corollary
implies the existence of ;1 € K™ such that uh € Hj. Now replace h by ph and w be pw. Then
Corollary ensures that (h + w)p is an (L, G)-rational line. Furthermore, scale w so that (h +
w) e W € L*, whence by Corollary 2.12|h +w + @ € L£(G). We use this element as ¥ instead. Note
that it still satisfies & ® w = 0, but now k # 0.

Now we are done by Corollary [2.24] O

Corollary 2.26. Assume (L(G))x =V, and let Hy, be an (L, G)-rational symplectic space.
Then there is an (L, G)-rational symplectic space I, containing Hy, such that L(G) C I U I3.

Proof. Tterate Proposition [2.25] O

2.7 Proofs of group theoretic results

In this section we will finish the proofs of Theorem[I.1|and Corollaries [I.2]and

Lemma 2.27. Let V = S1 @ - - - & Sy, be a decomposition of V into linearly independent, mutually
orthogonal subspaces such that L(G) C S1 U --- U Sh.

(a) If vi,ve € L(G) N Sy are such that vi + va € L(G), then for all ¢ € G there exists an index
i € {1,...,h} such that g(v1) and g(vy) belong to the same S;.

(b) If Sy is (L, G)-rationalisable, then for all g € G there exists an index i € {1,...,h} such that
951 C S

Proof. (d) Assume that g(v1) € S; and g(v2) € S; with i # j. Then g(v1) + g(v2) = g(v1 + v2) €
L(G) satisfies g(v1 + v2) € S; @ S;, but it neither belongs to S; nor to S;. This contradicts the
assumption that £(G) C Sy U --- U Sp.

@ If S1 = 1,1 with Sy 1, an (L, G)-rational space, we can apply @) to an L-basis of Sy 7. [
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Corollary 2.28. Let I, C V be an (L,G)-rational symplectic subspace such that L(G) C Ix U I3
and let g € G. Then either g(Ix) = Ix or g(Ix) C I3 in the latter case I N g(Ix) = 0.

Proof. This follows from Lemma with S1 = Ig and Sy = 1 [L( O
We are now ready to prove Theorem [I.1]

Proof of Theorem|[[.1} As we assume that G contains some transvection, it follows that £(G) is
nonempty and consequently (£(G)) k is a nonzero K-vector space stabilised by G due to Lemma[2.5]
Hence, either we are in case[I]of Theorem|[I.1jor (£(G))x = V, which we assume now.

From Proposition we obtain that there is some A € GSp(V), a subfield L < K such that
there is an (L, AG A~!)-rational symplectic plane Hy. Since the statements of Theorem |1.1|are not
affected by this conjugation, we may now assume that H, is (L, G)-rational.

From Corollary 2.26) we obtain an (L, G)-rational symplectic space Iy 1, such that £(G) C I g U
I IJ_K If I x =V, then we know due to I; 7, = L™ that G contains a transvection whose direction
is any vector of 1 ;. As the transvections generate the symplectic group, it follows that G contains
Sp(11,) = Sp,,(L) and we are in case [3|of Theorem [1.1] Hence, suppose now that I1 g # V.

Either every g € G stabilises I g, and we are in case and done, or thereis g € G and v € Iy,
with g(v) & I1 k. Set Iy 1, := gl 1. Note that I ;, C L(G) because of Lemma Now we apply
Corollary to the decomposition V' = I; x @ If’K and obtain that g(I 1, k) CI fK Moreover
L(G) = L(gGg™) C gl gk U gIﬁK =1l g U szK.

We now have £(G) C I) kUL gk U(I1 g ® 1o k)" Either Iy k 1o x = V and (I1 k B Lo )+ =

0, or there are two possibilities:

e Forall g € G, gl1,1, C I x U I3 . If this is the case, then G fixes the space I x © I> , and

we are in case |l and done.

e There exists g € G, v € Iy such that g(v) & I k U o k. Set I3 = gl. Due to
L(G) C I3 i U I3y, we then have £(G) C 1 g Ulp g Uy g U (I g @ Io i @ I3 ).

Hence, iterating this procedure, we see that either we are in case[I] or we obtain a decomposition
V =1 k®- - -®I} x with mutually orthogonal symplectic spaces such that L(G) C I gU-- Ulp k.
Note that Lemma implies that GG respects this decomposition in the sense that for all ¢ €
{1,...,h} thereis j € {1,...,h} such that g(I; k) = I; k. If the resulting action of G on the index
set {1,...,h} is not transitive, then we are again in case [1} otherwise in case 2} O

Proof of Corollary[T.2} Since T is compact and the topology on Fy is discrete, the image of p is a
subgroup of GSp,,(K) for a certain finite field K of characteristic /. Therefore one of the three
possibilities of Theorem holds for G := im(p). If the first holds, then p is reducible, and if the
third holds, then im(p) contains a group conjugate to Sp,,(L) for some subfield L of K.

Assume now that the second possibility holds. We use notation as in Theorem Let IV be
{g € T' | 04(1) = 1}, the stabiliser of the first subspace. This is a closed subgroup of I' of finite
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index. Choose coset representatives and write I' = |_|ii1 g;I". The set {yS1 | v € T'} contains h’
elements, namely precisely the ¢;S1 for i = 1,...,h'. As the action of G on the decomposition is
transitive, this set is precisely {S1,..., S}, whence h = h'. Define p’ as the restriction of p to I

acting on S7. Then as I'-representation we have the isomorphism

h h
Ve s> @os.
i=1 i=1
Proposition (10.5) of §10A of [CR81] implies that p = Ind}, (p'). O

Proof of Corollary[I.3] Assume that G contains a subgroup conjugate (in GSp(V')) to Sp,,(Fy). In
particular, G’ does not fix any proper subspace S C V, nor any decomposition V' = @?:1 S; into
mutually orthogonal nonsingular symplectic subspaces. Hence by Theorem [I.1] there is a subfield L
of K such that the subgroup generated by the symplectic transvections of G is conjugated (in GSp(V"))
to Sp,,(L). The other implication is clear. O

3 Symplectic representations with huge image

In this section we establish Theorem [1.3]

3.1 (n,p)-groups

As a generalisation of dihedral groups, in [KLSOS8|], Khare, Larsen and Savin introduce so-called
(n, p)-groups. We briefly recall some facts and some notation to be used. For the definition of (n, p)-
groups we refer to [KLSO8]. Let ¢ be a prime number, and let Q,»/Q, be the unique unramified
extension of (@, of degree n (inside a fixed algebraic closure @q). Assume p is a prime such that the
order of ¢ modulo p is n. Recall that qun ~ pign_1 X Uy % q%, where pgn—1 is the group of (¢ — 1)-
th roots of unity and U; the group of 1-units. Let ¢ be a prime distinct from p and ¢. Assuming
that p, ¢ > n, in [KLSO8] the authors construct a character x, : qun — @Z that satisfies the three
properties of the following lemma, which is proved in [KLSOS]], Section 3.1.

Lemma 3.1. Let x, : Q. — Q; be a character satisfying:
® X4 has order 2p.
i Xq’uqn,lel has order p.

* Xq(q) = —L

This character gives rise to a character (which by abuse of notation we call also x,) of Gg,. by
means of the reciprocity map of local class field theory.

G
Let pqy = Indegzn (Xq)- Then py is irreducible and symplectic, in the sense that it can be conjug-

ated to take values in Sp,,(Q,), and the image of the reduction Pq of pq in Sp,, (Fy) is an (n, p)-group.

o p— =X . . — — . . .
Moreover, if a : Go, — F, is an unramified character, then p, ® @ is also irreducible.
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. . G — L. . . . _
Note that also the reduction of p, is Indagzn ( Xq)’ which is an irreducible representation. Here

is the composite of x, and the projection Z¢ — . To see why the last assertion is true, note that to

see that p, @ @ = IndGEZn Xy ® (a|GQqn )) is irreducible, it suffices to prove that the n characters

X, @ (@lcg , ) (X @ (@lag , ) (X, ® (@lag , ))?" " are different (cf. [Ser77], Proposition 23,
q q q
Chapter 7). But the order of the restriction of X, ® (&]GQ ) to the inertia group at ¢ is p (since @ is
q

unramified), and the order of ¢ mod p is n.

3.2 Regular Galois representations

In our result we assume that our representation p is regular, which is a condition on the tame inertia

weights of p.

Definition 3.2 (Regularity). Let ¢ be a prime number, n a natural number, V' an n-dimensional vector
space over Fy and p - Go, — GL(V) a Galois representation, and denote by I, the inertia group
at 0. We say that p is regular if there exists an integer s between 1 and n, and for eachi = 1,... s,
a set S; of natural numbers in {0,1,...,¢ — 1}, of cardinality r;, with 11 + --- + 15 = n, say
Si = {ain,...,aiy}, such that the cardinality of S = S1 U --- U Sy equals n (i.e. all the a; j are
distinct) and such that, if we denote by B; the matrix
o 0
szf

i

b-ETi_l
0 gl

with 1y, our fixed choice of fundamental character of niveau r; and b; = a; 1 +a; 20+ - -+ az-,riﬁi_l,
Bl
0 By

The elements of S are called tame inertia weights of p. We will say that p has tame inertia weights at
most k if S C {0,1,...,k}. We will say that a global representation p : Gg — GL(V') is regular if

then

P‘Ie ~

playg, is regular.

Lemma 3.3. Let p : Gg, — GL, (F¢) be a Galois representation which is regular with tame inertia
weights at most k. Assume that £ > kn! + 1. Then all the n!-th powers of the characters on the

diagonal of p|1, are distinct.

Proof. We use the notation of Definition Assume we had that the n!-th powers of two characters

of the diagonal coincide, say

nl(coterlter,1077Y)  nl(dotdibetdn, 1077

T = Yry s
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where co, ..., ¢r,—1,do, - . ., dy, 1 are distinct elements of Sy U --- U Ss.

0T A
. T L
Let ¢y, be a fundamental character of niveau r;7; such that 1/1rfr; ' =1, and wrfrj b=, i

We can write the equality above as

o rirs
£ —1 P £rI-1
n!(co+clé+---+cri,1€” 1 e

ri—1
i ) Vi n!(d0+d1€+~~~+dr]~71f i)
w’f‘i’r‘j = w'l‘ﬂ‘j .

In other words, ¢"i"7 — 1 divides the quantity

riti — 1

B i — 1
-1

C B
0 i —1

nl(co+eal+--+ Cri_lﬂnfl) nl(do +dil+---+ drj_lfrjfl) .

Note that Cj is nonzero because modulo ¢ it is congruent to n!(co—dp), and by assumption all elements

in S1U- - -US; are in different congruence classes modulo £. But |co+c10+- -+, 1077 < k(1+

O+ -+ 0771 = k(7 —1)/(£—1). Analogously |do+dil+---+dp, 1077 < k(07 —1)/(£—1).

Thus Cj is bounded above by
g?“ﬂ‘j _

max{ ﬁn!(co Forlt 4 ey 7Y

v — 1

ﬁn!(do +dil+ -+ drjflﬂrf_l) |

)

frin 1
< nlk (M) < nlk (7751 1 o2

Since £ — 2 > n!k, we have /2 — 1 > (2 — 4 > nlk(¢ + 2) and thus Cy < nlk(£7i7 =1 4 2¢mimi=2) =
nlk(f 4 2)¢mimi=2 < 7" — 1. Hence £""i — 1 cannot divide Cj. O

We will now use these lemmas to study the ramification at ¢ of an induced representation un-
der the assumption of regularity (possibly after a twist by a power of the cyclotomic character) and

boundedness of tame inertia weights.

Proposition 3.4. Letn,m,k € N, a € Z and let { > kn!+ 1 be a prime, K /Q a finite extension such
that [K : Q] -m = n, p: Gxg — GL,(F() a Galois representation and let 3 = Indggp. Ifx; ® B

is regular with tame inertia weights at most k, then K /Q does not ramify at {.

Proof. Assume that K/Q ramifies at ¢; we will derive a contradiction. First of all, let us fix some
notation: let NV/Q be the Galois closure of K /Q, and let us fix a prime A of N above ¢. Denote by
I, C G the inertia group at ¢, I, , C I, the wild inertia group at £ and Iy C Gy the inertia group at
the prime ). Let W be the F,-vector space underlying p. For each v € G, denote "K = ~(K) and
define Vp : G~ — GL(W) by "p(0) = p(yoy™1).

Let us now pick any v € Gg, 0 € Iy and 7 € Iy. Since Iy/I is cyclic, we have that the
commutator o~ '7o7~! belongs to Iy . Since Iy C I, is normal, oo € Iy € Gy C Gk, 50

we may apply 7 p and conclude

(o ro ) p(r ) = Tp(o oY) € VplIiw),

1

hence 7"p(o~"70) and 7 p(7) have exactly the same eigenvalues.
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Since N/Q ramifies in ¢, we may pick o € I; \ Gy, and since N = nyeG@ YK, there exists
some v € Gg such that ¢ € G~ . This implies that 5(oy)(W) N B(v)(W) = 0. Choose now a set
of left-coset representatives {v1G, . ..,74G Kk} of Gk in Gg with y; = v and 2 = o7y; Mackey’s
formula ([CR&1], 10.13) implies that

d
G G Grige
ResG%IndG?;p = @ RestvK Tip.
i=1
Therefore 5(7) is a block-diagonal matrix, where one block is 7p(7) and another block is 7 p(7) =
7p(c~'70). But, by hypothesis, the tame inertia weights of X7 ® B are bounded. By Lemma we
have that the n!-powers of the characters on the diagonal of x§ ® 3|, are all different, which implies

1

that the characters on the diagonal of /|7, are all different. Thus Yp(7) and "p(o~"70) cannot have

the same eigenvalues for all 7 € . O

3.3 Representations induced in two ways

We need a proposition concerning representations induced from different subgroups of a certain
group G.

Proposition 3.5. Let G be a finite group, N I G, H < G. Assume (G : N) = n, and let p > n
be a prime. Let K be a field of characteristic coprime to |G| containing all |G|-th roots of unity. Let
S be a K[H|-module, x : N — K* a character, say x = x1 ® X2, where x1 : N — K* (resp.
x2 : N — K*) has order equal to a nontrivial power of p (resp. not divisible by p). Assume

p = IndF(S) = Ind§(x),
and furthermore the n caracters {x§ : 0 € G/N} are different. Then N < H.

Following 7.2 of [Ser77], if G is a finite group and we are given two G-modules V; and V5, we will
denote by (V1, Va)g := dim Homg(Vi, V2). It is known (Lemma 2 of Chapter 7 of [Ser77]) that, if

1 and (9 are the characters of V7 and V5, then (V1, Va)g = (1, 02)¢ == ﬁ ppe 01(g ) w2(9).
Before giving the proof, we will first prove a lemma.

Lemma 3.6. Let G be a group, N < G and H < G such that (G : H) < n. Let p be a prime such
that p > n, let K be a field of characteristic coprime to |G| containing all |G|-th roots of unity, and

let x : N — K be a character whose order is a nontrivial power of p. Then Resgm N X IS not trivial.

Proof. Assume Resjl}]m N X is trivial. Then H N N < ker x. But ker x < N, and the index (N :
ker x) > p. Therefore (N : H N N) > p. Buton the otherhandp >n > (G: H) > (HN : H) =
(N : NN H). Contradiction. O

Proof of Proposition[3.5] Observe that p is irreducible. Namely, there is a well-known criterion char-
acterising when an induced representation is irreducible (cf. [Ser77], Proposition 23, Chapter 7). In
particular, since N is normal in GG, we have that Ind%x is irreducible if and only if x is irreducible
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(which clearly holds) and, for all g € G/N, (Res§ (x))" is not isomorphic to Res%(x). This last
condition holds because the n characters {x{ : 0 € G/N} are different, and x> has order prime to p.

Since p is irreducible, we have that

1= {p,p)c = {Ind§(5), Ind§, ()c = (S, ResiInd§ (x))mr = -+,

where in the last step we used Frobenius reciprocity. Now we apply Mackey’s formula ([CR&1],
10.13) on the right hand side; note that, since N is normal, H\G/N ~ G/(H - N):

=5, @ IndgmNRengNOa»H = Z (S, IndﬁmNResgnN(Xv»H-
YEG/(H-N) YEG/(H-N)

Hence there is a unique v € G/(H - N) such that
(S, IndfrnRespyny (X)) i = 1.
If we prove that, for all y, Ind4 -y Res¥ - x (x?) is irreducible, then we will have that
S =~ IndfnyResion (x7)

(for some ), hence dim(S) = (H : HNN). But, on the other hand, since p = Ind%(S) = Ind$§(x),
we have that dim(S) - (G: H) = (G : N), so
(G:HN)(HN:N) (H:NnNH)

n(S) =GN EN H) (N NOH)

and therefore the conclusion is that (N : N N H) = 1, in other words, N < H.

Therefore to conclude we only need to see that Ind4 - yRes¥ -y (x7) is irreducible. Since con-
jugation by ~ plays no role here, let us just assume v = 1. We apply again the criterion characterising
when an induced representation is irreducible. In particular, since H N N is normal in H, we have
that Ind ¥ yRes¥ v (x) is irreducible if and only if Res - (x) is irreducible (which clearly holds)
and, forall h € H/N N H, (Res¥x(x))" is not isomorphic to Res® - x (x).

So pick h € H\ N. We have (Res¥~n(x))" = Res¥n(x"). Assume that Res¥y v (x") =
Resy - (X). In particular, we obtain that Res¥ x(x7) = ResNx(x1). By Lemma it holds that
X1 = X}f as characters of N. But we know that for all o € G/N, x§ # x1. Now it suffices to observe
that H/(H N N) — G/N. O

3.4 Proofs

Finally we carry out the proof of Theorem [I.5]

Lemma 3.7. Assume Set-up[l.4] Let k € N, { # p, q be a prime such that £ > kn!+ 1 and { { N. Let
Xq : GQqn — @Z be a character satisfying the assumptions of Lemma and X, the composition of
Xq With the reduction map Zy — Fy. Leta : Go, — ?2( be an unramified character.
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Let p : Gg — GSp,,(Fy) be a Galois representation, ramified only at the primes dividing N g/,
such that a twist by some power of the cyclotomic character is regular in the sense of Definition 3.2]
with tame inertia weights at most k, and satisfying (1) and (3) of Theorem[1.5] Then p is not induced

from a representation of an open subgroup H C G.

Proof. Let H C G be an open subgroup, say of index h, and p' : H — GL,, /h(E) a represent-

ation such that p = IndeQ(p’ ). Call S; C V the spaces undeélying p' and p, respectively, so that

p = IndeQ(Sl). Recall that by assumption Resgg2 (p) = Inngq (X,) ® @. We want to compute
q q™

Resggq Inde(Sl). Let us apply Mackey’s formula ([CR81]], 10.13). By Lemma [3.1) we know that

G
Resggq IndeQ(Sl) = InngZn (X,) ® @ is irreducible, so there can only be one summand in the

formula, hence
G G Go
ReSGgq Ind;*(S1) = IndGQZ mHRengqu (S1),

and therefore
G G, - .
InngZm nRestiy u(S1) = Inngzn (X,) ® @ 3.1)

.. . G
We now apply Proposition (3.5 to Equation (3.1). Note that Resgg p = IndGEq Xy @ @ =
q qn

Indggzn Xy ® (a\g@qn )). We can write X, ® (E\GQqn ) = X1 ® Xa, Where X has order a power of p
and Y, has order prime to p. Note that the restriction of y, ® (a|GQqn ) to the inertia group I, of G,
coincides with the restriction of y,, which has order p. Thus (X; ® X2)|1, = X4l1, = X11,- Since the
order of ¢ mod p is n, we know that the n characters Y | Iys Xi| Igs- .Y'fn | 1, are distinct. We can take
G = p(Gg,) in the statement of Proposition whose order is a divisor of 2np - ord(@) and, hence,
prime to £. It thus follows that Gg ., < (Gg, N H).

Note that, on the one hand

n=dimV = dim(Ind5%8)) = (Gg : H) dim(Sy).
On the other hand,
. G .
n = dlm(InngZmHResg@qm (1)) = (Gg, : Gg, N H) dim(S1),

hence (Ggq : H) = (Gg, : Go, N H).
Let L be the number field such that H = Gal(Q/L). Now Gal(Q/L) N Gg, = Gal(Q,/Ly),
where q is a certain prime of L above g and L, denotes the completion of L at q. The inclusion

G@qn < Gal(@q / Lq) means that we have the following field inclusions:
quLq ng” g@q

and [Lq : Q4] = (Gq, : Go, " H) = (Gg : H) = [L : Q], hence q is inert in L/Q.
Let /; be a prime dividing N, let L/Q be a Galois closure of L/Q, A; a prime of L above ¢;
and I; the inertia group of A1 over Q. Since ged(|p(Iy, )|, n!) = 1 and Gal(L/Q) has order dividing
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n!, we get that the projection of p(I1) C p(I,) into p(Gq)/p(G) is trivial. Thus, p(I1) C p(G;).
Hence L/Q is unramified at ¢; and so is L/Q.

To sum up, we know that L can only be ramified at the primes dividing Ng¢. But L cannot ramify
at g since Ly € Qgn (and Qg» is an unramified extension of Q,). We just saw that L cannot ramify
at the primes dividing N;. We also know that L cannot be ramified at ¢ (cf. Proposition [3.4). Hence
L only ramifies at the primes dividing N». By the choice of ¢, it is completely split in L, and at the
same time inert in L. This shows L = Q and H = Gy. [

Now we can easily prove our main result.

Proof of Theorem|[[.5] Let G = Imp. Since G contains a transvection, one of the following three
possibilities holds (cf. Corollary [I.2):

1. pisreducible.

2. There exists an open subgroup H C Gq, say of index h with n/h even, and a representation
p': H = GSp,,/;(F,) such that p = Indg@p’.

3. The group generated by the transvections in G is conjugated (in GSp,,(F;)) to Sp,,(F¢+) for some

exponent 7.

By Lemma [3.1] G acts irreducibly on V, hence the first possibility cannot occur. By Lemma
the second possibility does not occur. Hence the third possibility holds, and this finishes the proof of
the theorem. O

Proof of Corollary[l.6] This follows from the main theorem of Part I (JAdDW13]) concerning the
application to the inverse Galois problem. In order to be able to apply it, there are two things to check:

Firstly, we note that p, is maximally induced of order p at the prime g. Secondly, the existence of
a transvection in the image of p, together with the special shape of the representation at g allow us to
conclude from Theorem that the image of 7, is huge for all A\|¢, where ¢ runs through the rational

primes outside a density zero set. 0
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