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Abstract

This article is the second part of a series of three articles about compatible systems of sym-
plectic Galois representations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge residual image,
by which we mean that a symplectic group of full dimension over the prime field is contained up
to conjugation. We prove a classification result on those subgroups of a general symplectic group
over a finite field that contain a nontrivial transvection. Translating this group theoretic result into
the language of symplectic representations whose image contains a nontrivial transvection, these
fall into three very simply describable classes: the reducible ones, the induced ones and those
with huge image. Using the idea of an (n, p)-group of Khare, Larsen and Savin we give simple
conditions under which a symplectic Galois representation with coefficients in a finite field has a
huge image. Finally, we combine this classification result with the main result of the first part to
obtain a strenghtened application to the inverse Galois problem.

MSC (2010): 11F80 (Galois representations); 20G14 (Linear algebraic groups over finite
fields), 12F12 (Inverse Galois theory).

1 Introduction

This article is the second of a series of three about compatible systems of symplectic Galois repres-
entations and applications to the inverse Galois problem.

This part is concerned with symplectic Galois representations having a huge image: For a prime `,
a finite subgroup G ⊆ GSpn(F`) is called huge if it contains a conjugate (in GSpn(F`)) of Spn(F`).
By Corollary 1.3 below this notion is the same as the one introduced in Part I [AdDW13].
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Whereas the classification of the finite subgroups of Spn(F`) appears very complicated to us, it
turns out that the finite subgroups containing a nontrivial transvection can be very cleanly classified
into three classes, one of which is that of huge subgroups. This is the main group theoretic result
of this article (see Theorem 1.1 below). Translating this group theoretic result into the language of
symplectic representations whose image contains a nontrivial transvection, these also fall into three
very simply describable classes: the reducible ones, the induced ones and those with huge image (see
Corollary 1.2).

Using the idea of an (n, p)-group of [KLS08] (i.e. of a maximally induced place of order p, in the
terminology of Part I), some number theory allows us to give very simple conditions under which a
symplectic Galois representation with coefficients in F` has huge image (see Theorem 1.5 below).

This second part is independent of the first, except for Corollary 1.6, which combines the main
results of Part I [AdDW13], and the present Part II. In Part III [AdDSW13] written in collaboration
with Sug Woo Shin, a compatible system satisfying the assumptions of Corollary 1.6 is constructed.

Statement of the results

In order to fix terminology, we recall some standard definitions. Let K be a field. An n-dimensional
K-vector space V equipped with a symplectic form (i.e. nonsingular and alternating), denoted by
〈v, w〉 = v • w for v, w ∈ V , is called a symplectic K-space. A K-subspace W ⊆ V is called a
symplectic K-subspace if the restriction of 〈v, w〉 to W ×W is nonsingular (hence, symplectic). The
general symplectic group GSp(V, 〈·, ·〉) =: GSp(V ) consists of those A ∈ GL(V ) such that there is
α ∈ K×, the multiplier (or similitude factor) of A, such that we have (Av) • (Aw) = α(v •w) for all
v, w ∈ V . The multiplier of A is denoted by m(A). The symplectic group Sp(V, 〈·, ·〉) =: Sp(V ) is
the subgroup of GSp(V ) of elements with multiplier 1. An element τ ∈ GL(V ) is a transvection if
τ− idV has rank 1, i.e. if τ fixes a hyperplane pointwisely, and there is a line U such that τ(v)−v ∈ U
for all v ∈ V . The fixed hyperplane is called the axis of τ and the lineU is the centre (or the direction).
We will consider the identity as a “trivial transvection”. Any transvection has determinant 1. A
symplectic transvection is a transvection in Sp(V ). Any symplectic transvection has the form

Tv[λ] ∈ Sp(V ) : u 7→ u+ λ〈u, v〉v

with direction vector v ∈ V and parameter λ ∈ K (see e.g. [Art57], pp. 137–138).
Our classification result on subgroups of general symplectic groups containing a nontrivial trans-

vection is the following.

Theorem 1.1. LetK be a finite field of characteristic at least 5 and V a symplecticK-vector space of
dimension n. Then any subgroup G of GSp(V ) which contains a nontrivial symplectic transvection
satisfies one of the following assertions:

1. There is a proper K-subspace S ⊂ V such that G(S) = S.

2



2. There are nonsingular symplectic K-subspaces Si ⊂ V with i = 1, . . . , h of dimension m for
some m < n such that V =

⊕h
i=1 Si and for all g ∈ G there is a permutation σg ∈ Symh

(the symmetric group on {1, . . . , h}) with g(Si) = Sσg(i). Moreover, the action of G on the set
{S1, . . . , Sh} thus defined is transitive.

3. There is a subfield L of K such that the subgroup generated by the symplectic transvections of G is
conjugated (in GSp(V )) to Spn(L).

The main purpose Section 2 is to prove this theorem. For our application to Galois representations
we provide the following representation theoretic reformulation of Theorem 1.1.

Corollary 1.2. Let ` be a prime at least 5, let Γ be a compact topological group and

ρ : Γ→ GSpn(F`)

a continuous representation (for the discrete topology on F`). Assume that the image of ρ contains a
nontrivial transvection. Then one of the following assertions holds:

1. ρ is reducible.

2. There is a closed subgroup Γ′ ( Γ of finite index h | n and a representation ρ′ : Γ′ → GSpn/h(F`)
such that ρ ∼= IndΓ

Γ′(ρ
′).

3. There is a finite field L of characteristic ` such that the subgroup generated by the symplectic
transvections in the image of ρ is conjugated (in GSpn(F`)) to Spn(L); in particular, the image is
huge.

The following corollary shows that the definition of a huge subgroup of GSpn(F`), which we give
in Part I [AdDW13], coincides with the simpler definition stated above.

Corollary 1.3. Let K be a finite field of characteristic ` ≥ 5, V a symplectic K-vector space of
dimension n, and G a subgroup of GSp(V ) which contains a symplectic transvection. Then the
following are equivalent:

(i) G is huge.

(ii) G contains a subgroup which is conjugate (in GSp(V )) to Spn(F`).

(iii) There is a subfield L of K such that the subgroup generated by the symplectic transvections of
G is conjugated (in GSp(V )) to Spn(L).

Combining our group theoretic results with (n, p)-groups, introduced by [KLS08], some number
theory allows us to prove the following theorem. Before stating it, let us collect some notation.
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Set-up 1.4. Let n,N ∈ N be integers with n even and N = N1 · N2 with gcd(N1, N2) = 1. Let
L0 be the compositum of all number fields of degree ≤ n/2, which are ramified at most at the primes
dividing N2 (which is a number field). Let q be a prime which is completely split in L0, and let p be a
prime dividing qn − 1 but not dividing q

n
2 − 1, and p ≡ 1 (mod n).

Theorem 1.5. Assume Set-up 1.4. Let k ∈ N, ` 6= p, q be a prime such that ` > kn!+1 and ` - N . Let
χq : GQqn → Q×` be a character satisfying the assumptions of Lemma 3.1, and χq the composition of
χq with the reduction map Z` → F`. Let α : GQq → F×` be an unramified character.

Let
ρ : GQ → GSpn(F`)

be a Galois representation, ramified only at the primes dividing Nq`, satisfying that a twist by some
power of the cyclotomic character is regular in the sense of Definition 3.2 with tame inertia weights
at most k, and such that (1) Res

GQ
GQq

(ρ) = Ind
GQq
GQqn

(χq)⊗ α, (2) the image of ρ contains a nontrivial
transvection and (3) for all primes `1 dividing N1, the image under ρ of I`1 , the inertia group at `1,
has order prime to n!.

Then the image of ρ is a huge subgroup of GSpn(F`).

Combining Theorem 1.5 with the results of Part I [AdDW13] of this series yields the following
corollary.

Corollary 1.6. Assume Set-up 1.4. Let ρ• = (ρλ)λ (where λ runs through the finite places of a
number field L) be an n-dimensional a. e. absolutely irreducible a. e. symplectic compatible system,
as defined in Part I ([AdDW13]), for the base field Q, which satisfies the following assumptions:

• For all places λ the representation ρλ is unramified outside Nq`, where ` is the rational prime
below λ.

• There are a ∈ Z and k ∈ N such that, for all but possibly finitely many places λ of L, the
reduction mod λ of χa` ⊗ ρλ is regular in the sense of Definition 3.2, with tame inertia weights
at most k.

• The multiplier of the system is a finite order character times a power of the cyclotomic character.

• For all primes ` not belonging to a density zero set of rational primes, and for each λ|`, the
residual representation ρλ contains a nontrivial transvection in its image.

• For all places λ not above q one has Res
GQ
GQq

(ρλ) = Ind
GQq
GQqn

(χq)⊗α, where α : GQq → L
×
λ is

some unramified character and χq : GQqn → Z× is a character such that its composite with the
embedding Z× ↪→ Q×` given by λ satisfies the assumptions of Lemma 3.1 for all primes ` - pq.
In the terminology of Part I, q is called a maximally induced place of order p.

• For all primes `1 dividing N1 and for all but possibly finitely many places λ, the group ρλ(I`1)

has order prime to n! (where I`1 denotes the inertia group at `1).
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Then we obtain:

(a) For all primes ` not belonging to a density zero set of rational primes, and for each λ|`, the image
of the residual representation ρλ is a huge subgroup of GSpn(F`).

(b) For any d | p−1
n there exists a setLd of rational primes ` of positive density such that for all ` ∈ Ld

there is a place λ of L above ` satisfying that the image of ρproj
λ is PGSpn(F`d) or PSpn(F`d).

The proofs of Theorem 1.5 and Corollary 1.6 are given in Section 3.
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2 Symplectic representations containing a transvection

In this section our group theoretic results is proved. This part was inspired by the work of Mitchell on
the classification of subgroups of classical groups. In an attempt to generalise Theorem 1 of [Mit14] to
arbitrary dimension, one of us (S. A.-d.-R.) came up with a precise strategy for Theorem 1.1. Several
ideas and some notation are borrowed from [LZ82].

2.1 Symplectic transvections in subgroups

Recall that the full symplectic group is generated by all its transvections. The main idea in this part is
to identify the subgroups of the general symplectic group containing a transvection by the centres of
the transvections in the subgroup.

Let K be a finite field of characteristic ` and V a symplectic K-vector space of dimension n.
Let G be a subgroup of GSp(V ). A main difficulty in this part stems from the fact that K need not
be a prime field, whence the set of direction vectors of the transvections contained in G need not be
a K-vector space. Suppose, for example, that we want to deal with the subgroup G = Spn(L) of
Spn(K) for L a subfield of K. Then the directions of the transvections of G form the L-vector space
Ln contained in Kn. It is this what we have in mind when we introduce the term (L,G)-rational
subspace below. In order to do so, we set up some more notation.

Write L(G) for the set of 0 6= v ∈ V such that Tv[λ] ∈ G for some λ ∈ K. More naturally, this
set should be considered as a subset of P(V ), the projective space consisting of the lines in V . We call

5



it the set of centres (or directions) of the symplectic transvections in G. For a given nonzero vector
v ∈ V , define the parameter group of direction v in G as

Pv(G) := {λ ∈ K | Tv[λ] ∈ G}.

The fact that Tv(µ) ◦ Tv(λ) = Tv(µ+ λ) shows that Pv(G) is a subgroup of the additive group of K.
IfK is a finite field of characteristic `, then Pv(G) is a finite direct product of copies of Z/`Z. Denote
the number of factors by rkv(G). Because of Pλv(G) = 1

λ2
Pv(G) for λ ∈ K×, it only depends on

the centre U := 〈v〉K ∈ L(G) ⊆ P(V ), and we call it the rank of U in G, although we will not make
use of this in our argument.

We find it useful to consider the surjective map

Φ : V ×K (v,λ)7→Tv [λ]−−−−−−−→ {symplectic transvections in Sp(V )}.

The multiplicative group K× acts on V × K via x(v, λ) := (xv, x−2λ). Passing to the quotient
modulo this action yields a bijection

(V \ {0} ×K)/K×
(v,λ)7→Tv [λ]−−−−−−−→ {nontrivial symplectic transvections in Sp(V )}.

When we consider the first projection πV : V ×K � V modulo the action of K× we obtain

πV : (V \ {0} ×K)/K× � P(V ),

which corresponds to sending a nontrivial transvection to its centre. Let W be a K-subspace of V .
Then Φ gives a bijection

(W \ {0} ×K)/K×
(v,λ)7→Tv [λ]−−−−−−−→ {nontrivial symplectic transvections in Sp(V ) with centre in W}.

Let L be a subfield of K. We call an L-vector space WL ⊆ V L-rational if dimKWK = dimLWL

with WK := 〈WL〉K and 〈·, ·〉 restricted to WL ×WL takes values in L. An L-vector space WL ⊆ V
is called (L,G)-rational if WL is L-rational and Φ induces a bijection

(WL \{0}×L)/L×
(v,λ)7→Tv [λ]−−−−−−−→ G∩{nontrivial sympl. transvections in Sp(V ) with centre in WK}.

Note that (WL \ {0}×L)/L× is naturally a subset of (WK \ {0}×K)/K×. A K-subspace W ⊆ V
is called (L,G)-rationalisable if there exists an (L,G)-rational WL with WK = W . We speak of
an (L,G)-rational symplectic subspace WL if it is (L,G)-rational and symplectic in the sense that
the restricted pairing is non-degenerate on WL. Let HL and IL be two (L,G)-rational symplectic
subspaces of V . We say that HL and IL are (L,G)-linked if there is 0 6= h ∈ HL and 0 6= w ∈ IL
such that h+ w ∈ L(G).
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2.2 Strategy

Now that we have set up all notation, we will describe the strategy behind the proof of Theorem 1.1,
as a service for the reader.

If one is not in case 1, then there are ‘many’ transvections in G, as otherwise the K-span of L(G)

would be a proper subspace of V stabilised by G. The presence of ‘many’ transvection is used first in
order to show the existence of a subfield L ⊆ K and an (L,G)-rational symplectic plane HL ⊆ V .
For this it is necessary to replace G by one of its conjugates inside GSp(V ). The main ingredient
for the existence of (L,G)-rational symplectic planes, which is treated in Section 2.4, is Dickson’s
classification of the finite subgroups of PGL2(F`).

The next main step is to show that two (L,G)-linked symplectic spaces in V can be merged
into a single one. This is the main result of Section 2.5. The main input is a result of Wagner for
transvections in three dimensional vector spaces.

The merging results are applied to extend the (L,G)-rational symplectic plane further, using again
the existence of ‘many’ transvections. We obtain a maximal (L,G)-rational symplectic space IL ⊆ V
in the sense that L(G) ⊂ IK ∪ I⊥K , which is proved in Section 2.6. The proof of Theorem 1.1 can
be deduced from this (see Section 2.7) because either IK equals V , that is the huge image case, or
translating IK by elements of G gives the decomposition in case 2.

2.3 Simple properties

We use the notation from the Introduction. In this subsection we list some simple lemmas illustrating
and characterising the definitions made above.

Lemma 2.1. Let v ∈ L(G). Then 〈v〉L is an (L,G)-rational line if and only if Pv(G) = L.

Proof. This follows immediately from that fact that all transvections with centre 〈v〉K can be written
uniquely as Tv[λ] for some λ ∈ K.

Lemma 2.2. Let WL ⊆ V be an (L,G)-rational space and UL an L-vector subspace of WL. Then
UL is also (L,G)-rational.

Proof. We first give two general statements about L-rational subspaces. Let u1, . . . , ud be an L-basis
of UL and extend it by w1, . . . , we to an L-basis of WL. As WL is L-rational, the chosen vectors
remain linearly independent over K, and, hence, UL is L-rational. Moreover, we see, e.g. by writing
down elements in the chosen basis, that WL ∩ UK = UL.

It is clear that Φ sends elements in (UL × L)/L× to symplectic transvections in G with centres
in UK . Conversely, let Tv[λ] be such a transvection. As WL is (L,G)-rational, Tv[λ] = Tu[µ] with
some u ∈ WL and µ ∈ L. Due to WL ∩ UK = UL, we have u ∈ UL and the tuple (u, µ) lies in
UL × L.

Lemma 2.3. Let WL ⊆ V be an L-rational subspace of V . Then the following assertions are equi-
valent:
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(i) WL is (L,G)-rational.

(ii) (a) TWL
[L] := {Tv[λ] | λ ∈ L, v ∈WL} ⊆ G and

(b) for each U ∈ L(G) ⊆ P(V ) with U ⊆ WK there is a u ∈ U ∩WL such that Pu(G) = L

(i.e. 〈u〉L is an (L,G)-rational line contained in U by Lemma 2.1).

Proof. ’(i)⇒ (ii):’ Note that (iia) is clear. For (iib), let U ∈ L(G) with U ⊆ WK . Hence, there is
u ∈ U and λ ∈ K× with Tu[λ] ∈ G. As WL is (L,G)-rational, we may assume that u ∈ WL and
λ ∈ L. Lemma 2.2 implies that 〈u〉L is an (L,G)-rational line.

’(ii)⇒ (i):’ Denote by ι the injection (WL \ {0} × L)/L× ↪→ (WK \ {0} ×K)/K×. By (iia),
the image of Φ ◦ ι lies in G. It remains to prove the surjectivity of this map onto the symplectic
transvections of G with centres in WK . Let Tv[λ] be one such. Take U = 〈v〉K . By (iib), there is
v0 ∈ U such that UL = 〈v0〉L ⊆ WL is an (L,G)-rational line. In particular, Tv[λ] = Tv0 [µ] with
some µ ∈ L, finishing the proof.

Lemma 2.4. Let A ∈ GSp(V ) with multiplier α ∈ K×. Then ATv[λ]A−1 = TAv[
λ
α ]. In particular,

the notion of (L,G)-rationality is not stable under conjugation.

Proof. For all w ∈ V , ATv[λ]A−1(w) = A(A−1w + λ(A−1w • v)v) = w + λ(A−1w • v)Av.
Since A has multiplier α, w • Av = α(A−1w • v), hence ATv[λ]A−1(w) = w + λ

α(w • Av)Av =

TAv[
λ
α ](w).

Lemma 2.5. The group G maps L(G) into itself.

Proof. Let g ∈ G andw ∈ L(G), say Tw[λ] ∈ G. Then by Lemma 2.4 we have gTw[λ]g−1 = Tgw[λα ],
where α is the multiplier of g. Hence, g(w) ∈ L(G).

The following lemma shows that the natural projection yields a bijection between transvections in
the symplectic group and their images in the projective symplectic group.

Lemma 2.6. Let V be a symplectic K-vector space, 0 6= u1, u2 ∈ V . If Tu1 [λ1]−1Tu2 [λ2] ∈ {a · Id :

a ∈ K×}, then Tu1 [λ1] = Tu2 [λ2].

Proof. Assume Tu1 [λ1]−1Tu2 [λ2] = aId. Then for all v ∈ V , Tu2 [λ2](v) − Tu1 [λ1](av) = 0. In
particular, taking v = u1, Tu2 [λ2](u1) − Tu1 [λ1](au1) = u1 + λ2(u1 • u2)u2 − au1 = 0, hence
either u1 and u2 are linearly dependent or a = 1 (thus both transvections coincide). Assume then
that u2 = bu1 for some b ∈ K×. Then for all v ∈ V we have Tbu1 [λ2](v) − Tu1 [λ1](av) =

v + λ2b
2(v • u1)u1 − av − λ1a(v • u1)u1 = (a − 1)v + (λ2b

2 − aλ1)(v • u1)u1 = 0. Choosing v
linearly independent from u1, we obtain a = 1, as we wished to prove.
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2.4 Existence of (L,G)-rational symplectic planes

Let, as before, K be a finite field of characteristic `, V a n-dimensional symplectic K-vector space
and G ⊆ GSp(V ) a subgroup. We will now prove the existence of (L,G)-rational symplectic planes
if there are two transvections in G with nonorthogonal directions.

Note that any additive subgroup H ⊆ K can appear as a parameter group of a direction. Just take
G to be the subgroup of GSp(V ) generated by the transvections in one fixed direction with parameters
in H . It might seem surprising that the existence of two nonorthogonal centres forces the parameter
group to be the additive group of a subfield L of K (up to multiplication by a fixed scalar). This is the
contents of Proposition 2.11, which is one of the main ingredients for this article. This proposition,
in turn, is based on Proposition 2.7, going back to Mitchell (cf. [Mit11]). To make this exposition
self-contained we also include a proof of it, which essentially relies on Dickson’s classification of the
finite subgroups of PGL2(F`). Recall that an elation is the image in PGL(V ) of a transvection in
GL(V ).

Proposition 2.7. Let V be a 2-dimensional K-vector space with basis {e1, e2} and Γ ⊆ PGL(V ) a
subgroup that contains two nontrivial elations whose centers U1 and U2 are different. Let `m be the
order of an `-Sylow subgroup of Γ.

Then K contains a subfield L with `m elements. Moreover, there exists A ∈ PGL2(K) such that
AU1 = 〈e1〉K , AU2 = 〈e2〉K , and AΓA−1 is either PGL(VL) or PSL(VL), where VL = 〈e1, e2〉L.

Proof. Since there are two elations τ1 and τ2 with independent directions U1 and U2, Dickson’s clas-
sification of subgroups of PGL2(F`) (Section 260 of [Dic58]) implies that there is B ∈ PGL2(K)

such that BΓB−1 is either PGL(VL) or PSL(VL), where L is a subfield of K with `m elements. By
Lemma 2.4, the direction of BτiB−1 is BUi for i = 1, 2 and the lines BUi are of the form 〈di〉K
with di ∈ VL for i = 1, 2. As PSL(VL) acts transitively on VL, there is C ∈ PSL(VL) such that
CU1 = 〈e1〉K and CU2 = 〈e2〉K . Setting A := CB yields the proposition.

Although the preceding proposition is quite simple, the very important consequence it has is that
the conjugated elations AτiA−1 both have direction vectors that can be defined over the same L-
rational plane.

Lemma 2.8. Let V be a 2-dimensional K-vector space, G ⊆ GL(V ) containing two transvections
with linearly independent directions U1 and U2. Let `m be the order of any `-Sylow subgroup of G.

Then K contains a subfield L with `m elements and there are A ∈ GL(V ) and an (L,AGA−1)-
rational plane VL ⊆ V . Moreover, A can be chosen such that AUi = Ui for i = 1, 2. Furthermore, if
u1 ∈ U1 and u2 ∈ U2 are such that u1 • u2 ∈ L×, then VL can be chosen to be 〈u1, u2〉L.

Proof. We apply Proposition 2.7 with e1 = u1, e2 = u2, and Γ the image of G in PGL(V ), and
obtain A ∈ GL(V ) (any lift of the matrix provided by the proposition) such that AΓA−1 equals
PSL(VL) or PGL(VL) for the L-rational plane VL = 〈u1, u2〉L ⊆ V , and AUi = Ui for i = 1, 2. For
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PSL(VL) and PGL(VL) it is true that the elations contained in them are precisely the images of Tv[λ]

for v ∈ VL and λ ∈ L.
First, we know that all such Tv[λ] are contained in SL(VL) and, thus, in AGA−1 (since AΓA−1

is PSL(VL) or PGL(VL)). Second, by Lemma 2.6 the image of Tv[λ] in AΓA−1 has a unique lift to
a transvection in SL(VL) ⊆ AGA−1, namely Tv[λ]. This proves that the transvections of AGA−1 are
precisely the Tv[λ] for v ∈ VL and λ ∈ L. Hence, VL is an (L,AGA−1)-rational plane.

Lemma 2.9. Let U1, U2 ∈ L(G) be such that H = U1 ⊕ U2 is a symplectic plane in V . By G0 we
denote the subgroup {g ∈ G | g(H) ⊆ H} and by G|H the restrictions of the elements of G0 to H .

Then L(G|H) ⊆ L(G) (under the inclusion P(H) ⊆ P(V )).

Proof. Let τi ∈ G be transvections with directions Ui for i = 1, 2. Clearly, τ1, τ2 ∈ G0 and their
restrictions to H are symplectic transvections with the same directions. Consequently, Lemma 2.8
provides us with A ∈ GL(H) and an (L,AGA−1)-rational plane HL ⊆ H .

Let U ∈ L(G|H). This means that there is g ∈ G0 such that g|H is a transvection with direc-
tion U , so that Ag|HA−1 is a transvection in AG|HA−1 with direction AU by Lemma 2.4. As HL

is (L,AG|HA−1)-rational, all transvections Tv[λ] for v ∈ HL and λ ∈ L lie in AG|HA−1, whence
AG|HA−1 contains SL(HL). Consequently, there is h ∈ AG|HA−1 such that hAU = AU1. But
A−1hA ∈ G|H , whence there is γ ∈ G0 with restriction to H equal to A−1hA. As γH ⊆ H ,
it follows that γU = γ|HU = A−1hAU = U1. Now, γ−1τ1γ is a transvection in G with centre
γ−1U1 = U , showing U ∈ L(G).

Corollary 2.10. Let U1, U2 ∈ L(G) be such that H = U1⊕U2 is a symplectic plane in V . By G0 we
denote the subgroup {g ∈ G | g(H) ⊆ H} and by G|H the restrictions of the elements of G0 to H .
Then the transvections of G|H are the restrictions to H of the transvections of G with centre in H .

Proof. Let T be the subgroup of G generated by the transvections of G with centre in H . We can
naturally identify T with T |H . Let U be the subgroup of G|H generated by the transvections of G|H .
We have that T |H ⊂ U .

Applying Lemma 2.8 to the K-vector space H and the subgroup U ⊂ GL(H), there exists a
subfield L ⊂ K, and an L-rational planeHL such that U is conjugate to SL(HL), hence U ' SL2(L).
Applying Lemma 2.8 to the K-vector space H and the subgroup T |H , we obtain a subfield L′ ⊂ K,
and an L′-rational plane HL′ such that T |H is conjugate to SL(HL′), hence H ' SL2(L′). But
L(T |H) = L(G) ∩H = L(G|H) = L(U) by Lemma 2.9, whence L = L′ and the cardinalities of U
and T |H coincide. Therefore they are equal.

Proposition 2.11. Let U1, U2 ∈ L(G) ⊆ P(V ) which are not orthogonal. Then there exist a subfield
L ≤ K, A ∈ GSp(V ), and an L-rational symplectic plane HL such that AU1 ⊆ HK , AU2 ⊆ HK

and such that HL is (L,AGA−1)-rational. Moreover, if we fix u1 ∈ U1, u2 ∈ U2 such that u1 • u2 ∈
L×, we can choose HL = 〈u1, u2〉L and A satisfying AU1 = U1, AU2 = U2.

10



Proof. LetH = U1⊕U2 and note that this is a symplectic plane. DefineG0 andG|H as in Lemma 2.9.
Lemma 2.8 provides us with B ∈ GL(H) such that BUi = Ui for i = 1, 2 and such that HL =

〈u1, u2〉L is an (L,BG|HB−1)-rational plane. We choose A ∈ GSp(V ) such that AH ⊆ H and
A|H = B (this is possible as any symplectic basis of H can be extended to a symplectic basis of V ).
We want to prove that HL is an (L,AGA−1)-rational symplectic plane in V .

And, indeed, by Corollary 2.10, the nontrivial transvections of AGA−1 with direction in H

coincide with the nontrivial transvections of BG|HB−1, which in turn correspond bijectively to
(HL \ {0} × L)/L.

Note that Theorem 1.1 is independent of conjugating G inside Sp(V ). Hence, we will henceforth
work with (L,G)-rational symplectic spaces (instead of (L,AGA−1)-rational ones).

Corollary 2.12. (a) Let HL be an L-rational plane which contains an (L,G)-rational line U1,L as
well as an L-rational line U2,L not orthogonal to U1,L with U2,K ∈ L(G).

Then HL is an (L,G)-rational symplectic plane.

(b) Let U1,L = 〈u1〉L be an (L,G)-rational line and U2 = 〈u2〉K ∈ L(G) such that u1 • u2 ∈ L×.

Then 〈u1, u2〉L is an (L,G)-rational symplectic plane.

Proof. (a) Fix u1 ∈ U1,L and u2 ∈ U2,L such that u1 • u2 = 1, and call WL = 〈u1, u2〉L. Apply
Proposition 2.11: we get L ⊆ K and A ∈ GSp(V ) such that 〈AU1,L〉K = 〈u1〉K , AU2 = 〈u2〉K and
WL is (L,AGA−1)-rational. Let a1, a2 ∈ K× be such that Au1 = a1u1 and Au2 = a2u2. The proof
will follow three steps: we will first see that Pu2(G) = L, then we will see that HL satisfies Lemma
2.3 (iia) and finally we will see that HL satisfies Lemma 2.3 (iib).

Let α be the multiplier of A. First note the following equality between α, a1 and a2:

1 = u1 • u2 =
1

α
(Au1 •Au2) =

1

α
(a1u1 • a2u2) =

a1a2

α
.

Recall that Pav(G) = 1
a2
Pv(G), and, from Lemma 2.4 it follows that PAv(AGA−1) = 1

αPv(G).
On the one hand, since U1,L is (L,G)-rational and u1 ∈ U1,L, we know that Pu1(G) = L by

Lemma 2.1. On the other hand, since 〈u1〉L is (L,AGA−1)-rational, Pu1(AGA−1) = L, hence
Pu1(G) = α

a21
L. We thus have α

a21
∈ L. Moreover, since 〈u2〉L is (L,AGA−1)-rational (e.g. using

Lemma 2.2), we have that Pu2(AGA−1) = L, hence Pu2(G) = α
a22
L =

a21α
α2 L =

a21
α L = L. This

proves that 〈u2〉L is (L,G)-rational by Lemma 2.1.
Next we will see that THL [L] ⊆ G. Let b1, b2 ∈ L with b1 6= 0 and λ ∈ L×. Consider the

transvection Tb1u1+b2u2 [λ]. We want to prove that it belongs to G. We compute

ATb1u1+b2u2 [λ]A−1 = TA(b1u1+b2u2)[
λ

α
] = Tb1a1u1+b2a2u2 [

λ

α
] = T

u1+
b2a2
b1a1

u2
[
b21a

2
1λ

α
].
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Note that since a1
a2

=
a21
α ∈ L and since WL = 〈u1, u2〉L is (L,AGA−1)-rational, it follows that

ATb1u1+b2u2 [λ]A−1 ∈ AGA−1, and therefore Tb1u1+b2u2 [λ] ∈ G. Note that the same conclusion is
valid for b1 = 0 as 〈u2〉L is (L,G)-rational.

Finally it remains to see that if U ∈ L(G) ∩ 〈HL〉K , then there is u ∈ U ∩HL with Pu(G) = L.
Assume that U ∈ L(G) ∩ 〈HL〉K . Since we have seen that 〈u2〉L is (L,G)-rational, we can assume
that U 6= 〈u2〉K . Therefore we can choose an element v ∈ U with v = u1 + bu2, for some b ∈ K.
It suffices to show that b ∈ L. Let Tv[λ] ∈ G be a transvection with direction U . Then computing
ATv[λ]A−1 as above, we get that ATv[λ]A−1 = T

u1+
ba2
a1
u2

[
a21λ
α ] is a transvection with direction in

L(AGA−1) ∩WL, hence the (L,AGA−1)-rationality of WL implies that b ∈ L.
(b) follows from (a) by observing that the condition u1 • u2 ∈ L× ensures that 〈u1, u2〉L is an

L-rational symplectic plane.

The next corollary says that the translate of each vector in an (L,G)-rational symplectic space by
some orthogonal vector w is the centre of a transvection if this is the case for one of them.

Corollary 2.13. Let HL ⊆ V be an (L,G)-rational symplectic space. Let w ∈ H⊥K and 0 6= h ∈ HL

such that 〈h+ w〉K ∈ L(G). Then 〈h1 + w〉L is an (L,G)-rational line for all 0 6= h1 ∈ HL.

Proof. Assume first that HL is a plane. Let ĥ ∈ HL with ĥ • h = 1 (hence HL = 〈h, ĥ〉L). As 〈ĥ〉L
is an (L,G)-rational line and ĥ • (h+w) = 1, it follows that 〈ĥ, h+w〉L is an (L,G)-rational plane
by Corollary 2.12. Consequently, for all µ ∈ L we have that 〈µĥ+h+w〉L is an (L,G)-rational line.
Let now µ ∈ L×. Then (µĥ+h+w)•h = µ 6= 0, whence again by Corollary 2.12 〈µĥ+h+w, h〉L
is an (L,G)-rational plane. Thus, for all ν ∈ L it follows that 〈µĥ + (ν + 1)h + w〉L is an (L,G)-
rational line. In order to get rid of the condition µ 6= 0, we exchange the roles of h and ĥ, yielding the
statement for planes.

To extend it to any symplectic space HL, note that, if h1, h2 ∈ HL are nonzero elements, there
exists an element ĥ ∈ HL such that h1•ĥ 6= 0, h2•ĥ 6= 0. Namely, let ĥ1, ĥ2 be such that h1•ĥ1 6= 0,
h2 • ĥ2 6= 0 (they exist because on HL the symplectic pairing is nondegenerate). If h2 • ĥ1 6= 0 or
h1 • ĥ2 6= 0, we are done. Otherwise ĥ = ĥ1 + ĥ2 satisfies the required condition.

Returning to the proof, if h1 ∈ HL is nonzero, take ĥ ∈ HL such that h • ĥ 6= 0 and h1 • ĥ 6= 0.
First apply the Corollary to the plane 〈h, ĥ〉L, yielding that ĥ+ w is an (L,G)-rational line, and then
apply it to the plane 〈ĥ, h1〉L, showing that h1 + w is an (L,G)-rational line, as required.

In the next lemma it is important that the characteristic of K is greater than 2.

Lemma 2.14. Let HL be an (L,G)-rational symplectic space. Let h, h̃ ∈ HL different from zero and
let w, w̃ ∈ H⊥K such that w • w̃ ∈ L× and h+ w, h̃+ w̃ ∈ L(G).

Then 〈w, w̃〉L is an (L,G)-rational symplectic plane.

Proof. By Corollary 2.13 we have that 〈h+ w̃〉L is an (L,G)-rational line. As (h+ w) • (h+ w̃) =

w•w̃ ∈ L×, by Corollary 2.12 it follows that 〈w−w̃〉L is an (L,G)-rational line. Since 〈−h−w〉K ∈
L(G), by Corollary 2.13 we have that 〈−h+w〉L is (L,G)-rational, and from (−h+w) • (h+ w̃) =
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w•w̃ ∈ L× we conclude that 〈w+w̃〉L is an (L,G)-rational line. As (w−w̃)•(w+w̃) = 2w•w̃ ∈ L×,
we obtain that 〈w + w̃, w − w̃〉L = 〈w, w̃〉L is an (L,G)-rational symplectic plane, as claimed.

We now deduce that linking is an equivalence relation between mutually orthogonal spaces. Note
that reflexivity and symmetry are clear and only transitivity need be shown.

Lemma 2.15. Let HL, IL and JL be mutually orthogonal (L,G)-rational symplectic subspaces of V .
If HL and IL are (L,G)-linked and also IL and JL are (L,G)-linked, then so are HL and JL.

Proof. By definition there exist nonzero h0 ∈ HL, i0, i1 ∈ IL and j0 ∈ JL such that h0 + i0 ∈ L(G)

and i1 + j0 ∈ L(G). There are ĥ0 ∈ HL and î0 ∈ IL such that ĥ0 • h0 = 1 and î0 • i0 = 1.
By Corollary 2.13 we have, in particular, that 〈h0 + i0〉L, 〈̂i0 + j0〉L and 〈ĥ0 + (i0 + î0)〉L are

(L,G)-rational lines. As (h0 + î0) • (i0 + j0) = 1, by Corollary 2.12 also 〈h0 + (i0 + î0) + j0〉L
is (L,G)-rational. Furthermore, due to (ĥ0 + (i0 + î0)) • (h0 + (i0 + î0) + j0) = 1, it follows that
〈(h0 − ĥ0) + j0〉L is (L,G)-rational, whence HL and JL are (L,G)-linked.

2.5 Merging linked orthogonal (L,G)-rational symplectic subspaces

We continue using our assumptions: K is a finite field of characteristic at least 5, L ⊆ K a subfield,
V a n-dimensional symplectic K-vector space, G ⊆ GSp(V ) a subgroup. In the previous section
we established the existence of (L,G)-rational symplectic planes in many cases (after allowing a
conjugation of G inside GSp(V )). In this section we aim at merging (L,G)-linked (L,G)-rational
symplectic planes into (L,G)-rational symplectic subspaces.

It is important to remark that no new conjugation of G is required. The only conjugation that is
needed is the one from the previous section in order to have an (L,G)-rational plane to start from.

Lemma 2.16. Let HL and IL be two (L,G)-rational symplectic subspaces of V which are (L,G)-
linked. Suppose that HL and IL are orthogonal to each other. Then all lines in HL ⊕ IL are (L,G)-
rational.

Proof. The (L,G)-linkage implies the existence of h1 ∈ HL and w1 ∈ IL such that 〈h1 + w1〉K ∈
L(G). By Corollary 2.13 〈h + w1〉L is an (L,G)-rational line for all h ∈ HL. The same reasoning
now gives that 〈h+ w〉L is an (L,G)-rational line for all h ∈ HL and all w ∈ IL.

In view of Lemma 2.3 the above is (iia). In order to obtain (iib), we need to invoke a result of
Wagner.

Proposition 2.17. Let V be a 3-dimensional vector space over a finite field K of characteristic ` ≥
5, and let G ⊆ SL(V ) be a group of transformations fixing a 1-dimensional vector space U . Let
U1, U2, U3 be three distinct centres of transvections in G such that U 6⊆ U1 ⊕ U2 and U 6= U3. Then
(U1 ⊕ U2) ∩ (U ⊕ U3) is the centre of a transvection of G.
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Proof. This is Theorem 3.1 (a) of [Wag74]. It is stated in a different terminology from ours. But,
note that finite desarguian projective planes correspond to usual projective planes P(V ), where V is a
3-dimensional vector space over a finite field (see Section 1.4, 5 of [Dem97], p. 28), and collineations
of such planes correspond to linear maps (cf. Section 1.4, 10 of [Dem97], p. 31).

Proposition 2.18. Let U1, U2, U3 ∈ L(G) and W = U1 + U2 + U3. Assume dimW = 3, U1 and
U2 not orthogonal and let U be a line in W ∩W⊥ which is linearly independent from U3 and is not
contained in U1 ⊕ U2. Then (U1 ⊕ U2) ∩ (U ⊕ U3) is a line in L(G).

Proof. Fix transvections Ti ∈ G with centre Ui, i = 1, 2, 3. These transvections fix W ; let H ⊆
SL(W ) be the group generated by the restrictions of the Ti to W . The condition U ⊆W⊥ guarantees
that the Ti fix U pointwise. Note that furthermore U 6= U3 and U 6⊆ U1 ⊕ U2. We can apply
Proposition 2.17, and conclude that (U1 ⊕ U2) ∩ (U ⊕ U3) is the centre of a transvection T of H .
This transvection fixes the symplectic plane U1 ⊕ U2. Call T0 the restriction of T to this plane. It is a
nontrivial transvection (since no line of U1⊕U2 can be orthogonal to all U1⊕U2). Hence by Lemma
2.9 the line (U1 ⊕ U2) ∩ (U ⊕ U3) belongs to L(G).

We now deduce rationality statements from it.

Corollary 2.19. Let HL be an (L,G)-rational symplectic plane and U3 and U4 be linearly independ-
ent lines not contained in HK . Assume U4 ⊆ HK ⊕ U3 is orthogonal to HK and to U3 and assume
that U3 ∈ L(G).

Then the intersection HK ∩ (U3 ⊕ U4) = IK for some line IL ⊆ HL.

Proof. Choose two (L,G)-rational lines U1,L and U2,L such that HL = U1,L ⊕ U2,L. With U = U4

we can apply Proposition 2.18 in order to obtain that I := HK ∩(U3⊕U4) is a line in L(G) contained
in HK . As HL is (L,G)-rational, it follows that I is (L,G)-rationalisable.

Corollary 2.20. Let HL ⊆ V be an (L,G)-rational symplectic space. Let h + w ∈ L(G) with
0 6= h ∈ HK and w ∈ H⊥K . Then h ∈ L(G). In particular, 〈h〉K is an (L,G)-rationalisable line, i.e.
there is µ ∈ K× such that µh ∈ HL.

Proof. If necessary replacing HL by any (L,G)-rational plane contained in HL, we may without loss
of generality assume that HL is an (L,G)-rational plane. Let y := h+w. If w = 0, the claim follows
from the (L,G)-rationality of HL. Hence, we suppose w 6= 0. Then U3 := 〈y〉K is not contained in
HK . Note that w is perpendicular to U3 and to HK , and w ∈ Hk⊕〈y〉K . Hence, Corollary 2.19 gives
that the intersection HK ∩ (U3 ⊕ 〈w〉K) = 〈h〉K is in L(G).

Corollary 2.20 gives the rationalisability of a line. In order to actually find a direction vector for a
parameter in L, we need something extra to rigidify the situation. For this, we now take a second link
which is sufficiently different from the first link.
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Corollary 2.21. Let HL ⊆ V be an (L,G)-rational symplectic space. Let 0 6= h̃ ∈ HK and w̃ ∈ H⊥K
such that h̃+w̃ ∈ L(G). Suppose that there are nonzero h ∈ HL andw ∈ H⊥K such that h+w ∈ L(G)

and w • w̃ ∈ L×.
Then h̃ ∈ HL.

Proof. By Corollary 2.20 there is some β ∈ K× such that βh̃ ∈ HL. We want to show β ∈ L.
By Corollary 2.13 we may assume that h • h̃ 6= 0, more precisely, h • (βh̃) = 1; and we have
furthermore that 〈h + w〉L is an (L,G)-rational line. By Corollary 2.12 (b), 〈h, βh̃〉L is an (L,G)-
rational symplectic plane contained in HL. Let c := w • w̃ ∈ L×. We have

(h+ w) • (h̃+ w̃) = h • h̃+ w • w̃ =
1

β
+ c =: µ.

If µ = 0, then β ∈ L and we are done. Assume µ 6= 0. By Corollary 2.12 (b) it follows that
〈h + w, µ−1(h̃ + w̃)〉L is an (L,G)-rational symplectic plane. Thus, 〈h + w + µ−1(h̃ + w̃)〉L is
an (L,G)-rational line. By Corollary 2.20 there is some ν ∈ K× such that ν(h + µ−1h̃) ∈ HL.

Consequently, ν ∈ L×, whence µ ∈ L, so that β ∈ L.

The main result of this section is the following merging result.

Proposition 2.22. Let HL and IL be orthogonal (L,G)-rational symplectic subspaces of V that are
(L,G)-linked.

Then HL ⊕ IL is an (L,G)-rational symplectic subspace of V .

Proof. We use Lemma 2.3. Part (iia) follows directly from Lemma 2.16. We now show (iib). Let
h + w ∈ L(G) with nonzero h ∈ HK and w ∈ IK be given. Corollary 2.20 yields µ, ν ∈ K× such
that µh ∈ HL and νw ∈ IL. Let ĥ ∈ HL with (µh) • ĥ = 1, as well as ŵ ∈ IL with (νw) • ŵ = 1.
Lemma 2.16 tells us that ĥ+ ŵ ∈ L(G). Together with (νh) + (νw) ∈ L(G), Corollary 2.21 yields
νh ∈ HL, whence νh+ νw ∈ HL ⊕ IL.

2.6 Extending (L,G)-rational spaces

We continue using the same notation as in the previous sections. Here, we will use the merging results
in order to extend (L,G)-rational symplectic spaces.

Proposition 2.23. LetHL be a nonzero (L,G)-rational symplectic subspace of V . Let nonzero h, h̃ ∈
HK , w, w̃ ∈ H⊥K be such that h+ w, h̃+ w̃ ∈ L(G) and w • w̃ 6= 0.

Then there exist α, β ∈ K× such that 〈αw, βw̃〉L is an (L,G)-rational symplectic plane which is
(L,G)-linked with HL.

Proof. By Corollary 2.20 we may and do assume by scaling h + w that h ∈ HL. Furthermore, we
assume by scaling h̃ + w̃ that w • w̃ = 1. Then Corollary 2.21 yields that h̃ ∈ HL. We may appeal
to Lemma 2.14 yielding that 〈w, w̃〉L is an (L,G)-rational plane. The (L,G)-link is just given by
h+ w.
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Corollary 2.24. Let HL be a non-zero (L,G)-rational symplectic subspace of V . Let nonzero h, h̃ ∈
HK , w, w̃ ∈ H⊥K be such that h+ w, h̃+ w̃ ∈ L(G) and w • w̃ 6= 0.

Then there is an (L,G)-rational symplectic subspace IL of V containing HL and such that IK =

〈HK , w, w̃〉K .

Proof. This follows directly from Propositions 2.23 and 2.22.

Proposition 2.25. Assume 〈L(G)〉K = V . Let HL be a nonzero (L,G)-rational symplectic space.
Let 0 6= v ∈ L(G) \ (HK ∪H⊥K).

Then there is an (L,G)-rational symplectic space IL containing HL such that v ∈ IK .

Proof. We write v = h + w with h ∈ HK and w ∈ H⊥K . Note that both h and w are nonzero by
assumption. As 〈L(G)〉K = V , we may choose ṽ ∈ L(G) such that ṽ • w 6= 0. We again write
ṽ = h̃+ w̃ with h̃ ∈ HK and w̃ ∈ H⊥K .

We, moreover, want to ensure that h̃ 6= 0. If h̃ = 0, then we proceed as follows. Corollary 2.20
implies the existence of µ ∈ K× such that µh ∈ HL. Now replace h by µh and w be µw. Then
Corollary 2.13 ensures that 〈h + w〉L is an (L,G)-rational line. Furthermore, scale w̃ so that (h +

w) • w̃ ∈ L×, whence by Corollary 2.12 h+w + w̃ ∈ L(G). We use this element as ṽ instead. Note
that it still satisfies ṽ • w 6= 0, but now h̃ 6= 0.

Now we are done by Corollary 2.24.

Corollary 2.26. Assume 〈L(G)〉K = V , and let HL be an (L,G)-rational symplectic space.
Then there is an (L,G)-rational symplectic space IL containing HL such that L(G) ⊆ IK ∪ I⊥K .

Proof. Iterate Proposition 2.25.

2.7 Proofs of group theoretic results

In this section we will finish the proofs of Theorem 1.1 and Corollaries 1.2 and 1.3.

Lemma 2.27. Let V = S1 ⊕ · · · ⊕ Sh be a decomposition of V into linearly independent, mutually
orthogonal subspaces such that L(G) ⊆ S1 ∪ · · · ∪ Sh.

(a) If v1, v2 ∈ L(G) ∩ S1 are such that v1 + v2 ∈ L(G), then for all g ∈ G there exists an index
i ∈ {1, . . . , h} such that g(v1) and g(v2) belong to the same Si.

(b) If S1 is (L,G)-rationalisable, then for all g ∈ G there exists an index i ∈ {1, . . . , h} such that
gS1 ⊆ Si.

Proof. (a) Assume that g(v1) ∈ Si and g(v2) ∈ Sj with i 6= j. Then g(v1) + g(v2) = g(v1 + v2) ∈
L(G) satisfies g(v1 + v2) ∈ Si ⊕ Sj , but it neither belongs to Si nor to Sj . This contradicts the
assumption that L(G) ⊆ S1 ∪ · · · ∪ Sh.

(b) If S1 = S1,L with S1,L an (L,G)-rational space, we can apply (a) to an L-basis of S1,L.
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Corollary 2.28. Let IL ⊆ V be an (L,G)-rational symplectic subspace such that L(G) ⊆ IK ∪ I⊥K
and let g ∈ G. Then either g(IK) = IK or g(IK) ⊆ I⊥K; in the latter case IK ∩ g(IK) = 0.

Proof. This follows from Lemma 2.27 with S1 = IK and S2 = I⊥K .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As we assume that G contains some transvection, it follows that L(G) is
nonempty and consequently 〈L(G)〉K is a nonzeroK-vector space stabilised byG due to Lemma 2.5.
Hence, either we are in case 1 of Theorem 1.1 or 〈L(G)〉K = V , which we assume now.

From Proposition 2.11 we obtain that there is some A ∈ GSp(V ), a subfield L ≤ K such that
there is an (L,AGA−1)-rational symplectic plane HL. Since the statements of Theorem 1.1 are not
affected by this conjugation, we may now assume that HL is (L,G)-rational.

From Corollary 2.26 we obtain an (L,G)-rational symplectic space I1,L such that L(G) ⊆ I1,K ∪
I⊥1,K . If I1,K = V , then we know due to I1,L

∼= Ln that G contains a transvection whose direction
is any vector of I1,L. As the transvections generate the symplectic group, it follows that G contains
Sp(I1,L) ∼= Spn(L) and we are in case 3 of Theorem 1.1. Hence, suppose now that I1,K 6= V .

Either every g ∈ G stabilises I1,K , and we are in case 1 and done, or there is g ∈ G and v ∈ I1,L

with g(v) 6∈ I1,K . Set I2,L := gI1,L. Note that I2,L ⊆ L(G) because of Lemma 2.4. Now we apply
Corollary 2.28 to the decomposition V = I1,K ⊕ I⊥1,K and obtain that g(I1,K) ⊆ I⊥1,K . Moreover
L(G) = L(gGg−1) ⊆ gI1,K ∪ gI⊥1,K = I2,K ∪ I⊥2,K .

We now have L(G) ⊆ I1,K∪I2,K∪(I1,K⊕I2,K)⊥. Either I1,K⊕I2,K = V and (I1,K⊕I2,K)⊥ =

0, or there are two possibilities:

• For all g ∈ G, gI1,L ⊆ I1,K ∪ I2,K . If this is the case, then G fixes the space I1,K ⊕ I2,K , and
we are in case 1, and done.

• There exists g ∈ G, v ∈ I1,L such that g(v) 6∈ I1,K ∪ I2,K . Set I3,L = gI1,L. Due to
L(G) ⊆ I3,K ∪ I⊥3,K , we then have L(G) ⊆ I1,K ∪ I2,K ∪ I3,K ∪ (I1,K ⊕ I2,K ⊕ I3,K)⊥.

Hence, iterating this procedure, we see that either we are in case 1, or we obtain a decomposition
V = I1,K⊕· · ·⊕Ih,K with mutually orthogonal symplectic spaces such thatL(G) ⊆ I1,K∪· · ·∪Ih,K .

Note that Lemma 2.27 implies that G respects this decomposition in the sense that for all i ∈
{1, . . . , h} there is j ∈ {1, . . . , h} such that g(Ii,K) = Ij,K . If the resulting action of G on the index
set {1, . . . , h} is not transitive, then we are again in case 1, otherwise in case 2.

Proof of Corollary 1.2. Since Γ is compact and the topology on F` is discrete, the image of ρ is a
subgroup of GSpn(K) for a certain finite field K of characteristic `. Therefore one of the three
possibilities of Theorem 1.1 holds for G := im(ρ). If the first holds, then ρ is reducible, and if the
third holds, then im(ρ) contains a group conjugate to Spn(L) for some subfield L of K.

Assume now that the second possibility holds. We use notation as in Theorem 1.1. Let Γ′ be
{g ∈ Γ | σg(1) = 1}, the stabiliser of the first subspace. This is a closed subgroup of Γ of finite
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index. Choose coset representatives and write Γ =
⊔h′

i=1 giΓ
′. The set {γS1 | γ ∈ Γ} contains h′

elements, namely precisely the giS1 for i = 1, . . . , h′. As the action of G on the decomposition is
transitive, this set is precisely {S1, . . . , Sh}, whence h = h′. Define ρ′ as the restriction of ρ to Γ′

acting on S1. Then as Γ-representation we have the isomorphism

V ∼=
h⊕
i=1

Si ∼=
h⊕
i=1

giS1.

Proposition (10.5) of §10A of [CR81] implies that ρ = IndΓ
Γ′(ρ

′).

Proof of Corollary 1.3. Assume that G contains a subgroup conjugate (in GSp(V )) to Spn(F`). In
particular, G does not fix any proper subspace S ⊂ V , nor any decomposition V =

⊕h
i=1 Si into

mutually orthogonal nonsingular symplectic subspaces. Hence by Theorem 1.1 there is a subfield L
of K such that the subgroup generated by the symplectic transvections ofG is conjugated (in GSp(V ))
to Spn(L). The other implication is clear.

3 Symplectic representations with huge image

In this section we establish Theorem 1.5.

3.1 (n, p)-groups

As a generalisation of dihedral groups, in [KLS08], Khare, Larsen and Savin introduce so-called
(n, p)-groups. We briefly recall some facts and some notation to be used. For the definition of (n, p)-
groups we refer to [KLS08]. Let q be a prime number, and let Qqn/Qq be the unique unramified
extension of Qq of degree n (inside a fixed algebraic closure Qq). Assume p is a prime such that the
order of q modulo p is n. Recall that Q×qn ' µqn−1 ×U1 × qZ, where µqn−1 is the group of (qn − 1)-
th roots of unity and U1 the group of 1-units. Let ` be a prime distinct from p and q. Assuming
that p, q > n, in [KLS08] the authors construct a character χq : Q×qn → Q×` that satisfies the three
properties of the following lemma, which is proved in [KLS08], Section 3.1.

Lemma 3.1. Let χq : Q×qn → Q×` be a character satisfying:

• χq has order 2p.

• χq|µqn−1×U1 has order p.

• χq(q) = −1.

This character gives rise to a character (which by abuse of notation we call also χq) of GQqn by
means of the reciprocity map of local class field theory.

Let ρq = Ind
GQq
GQqn

(χq). Then ρq is irreducible and symplectic, in the sense that it can be conjug-

ated to take values in Spn(Q`), and the image of the reduction ρq of ρq in Spn(F`) is an (n, p)-group.
Moreover, if α : GQq → F×` is an unramified character, then ρq ⊗ α is also irreducible.
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Note that also the reduction of ρq is Ind
GQq
GQqn

(χq), which is an irreducible representation. Here χq
is the composite of χq and the projection Z` � F`. To see why the last assertion is true, note that to
see that ρq ⊗ α = Ind

GQq
GQqn

(χq ⊗ (α|GQqn
)) is irreducible, it suffices to prove that the n characters

χq ⊗ (α|GQqn
), (χq ⊗ (α|GQqn

))q, . . . , (χq ⊗ (α|GQqn
))q

n−1
are different (cf. [Ser77], Proposition 23,

Chapter 7). But the order of the restriction of χq ⊗ (α|GQqn
) to the inertia group at q is p (since α is

unramified), and the order of q mod p is n.

3.2 Regular Galois representations

In our result we assume that our representation ρ is regular, which is a condition on the tame inertia
weights of ρ.

Definition 3.2 (Regularity). Let ` be a prime number, n a natural number, V an n-dimensional vector
space over F` and ρ : GQ` → GL(V ) a Galois representation, and denote by I` the inertia group
at `. We say that ρ is regular if there exists an integer s between 1 and n, and for each i = 1, . . . , s,
a set Si of natural numbers in {0, 1, . . . , ` − 1}, of cardinality ri, with r1 + · · · + rs = n, say
Si = {ai,1, . . . , ai,ri}, such that the cardinality of S = S1 ∪ · · · ∪ Ss equals n (i.e. all the ai,j are
distinct) and such that, if we denote by Bi the matrix

Bi ∼


ψbiri 0

ψbi`ri
. . .

0 ψbi`
ri−1

ri


with ψri our fixed choice of fundamental character of niveau ri and bi = ai,1 +ai,2`+ · · ·+ai,ri`ri−1,
then

ρ|I` ∼


B1 ∗

. . .

0 Bs

 .

The elements of S are called tame inertia weights of ρ. We will say that ρ has tame inertia weights at
most k if S ⊆ {0, 1, . . . , k}. We will say that a global representation ρ : GQ → GL(V ) is regular if
ρ|GQ`

is regular.

Lemma 3.3. Let ρ : GQ` → GLn(F`) be a Galois representation which is regular with tame inertia
weights at most k. Assume that ` > kn! + 1. Then all the n!-th powers of the characters on the
diagonal of ρ|I` are distinct.

Proof. We use the notation of Definition 3.2. Assume we had that the n!-th powers of two characters
of the diagonal coincide, say

ψ
n!(c0+c1`+···+cri−1`ri−1)
ri = ψ

n!(d0+d1`+···+drj−1`
rj−1)

rj ,
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where c0, . . . , cri−1, d0, . . . , drj−1 are distinct elements of S1 ∪ · · · ∪ Ss.

Let ψrirj be a fundamental character of niveau rirj such that ψ
`
rirj−1
`ri−1
rirj = ψri and ψ

`
rirj−1

`
rj−1

rirj = ψrj .
We can write the equality above as

ψ
`
rirj−1
`ri−1

n!(c0+c1`+···+cri−1`ri−1)
rirj = ψ

`
rirj−1

`
rj−1

n!(d0+d1`+···+drj−1`
rj−1)

rirj .

In other words, `rirj − 1 divides the quantity

C0 =

∣∣∣∣`rirj − 1

`ri − 1
n!(c0 + c1`+ · · ·+ cri−1`

ri−1)− `rirj − 1

`rj − 1
n!(d0 + d1`+ · · ·+ drj−1`

rj−1)

∣∣∣∣ .
Note thatC0 is nonzero because modulo ` it is congruent to n!(c0−d0), and by assumption all elements
in S1∪· · ·∪Ss are in different congruence classes modulo `. But |c0 +c1`+ · · ·+cri−1`

ri−1| ≤ k(1+

`+ · · ·+`ri−1) = k(`ri−1)/(`−1). Analogously |d0 +d1`+ · · ·+drj−1`
rj−1| < k(`rj−1)/(`−1).

Thus C0 is bounded above by

max{
∣∣∣∣`rirj − 1

`ri − 1
n!(c0 + c1`+ · · ·+ cri−1`

ri−1)

∣∣∣∣ , ∣∣∣∣`rirj − 1

`rj − 1
n!(d0 + d1`+ · · ·+ drj−1`

rj−1)

∣∣∣∣}
≤ n!k

(
`rirj − 1

`− 1

)
< n!k

(
`rirj−1 + 2`rirj−2

)
.

Since `− 2 ≥ n!k, we have `2 − 1 > `2 − 4 ≥ n!k(`+ 2) and thus C0 < n!k(`rirj−1 + 2`rirj−2) =

n!k(`+ 2)`rirj−2 < `rirj − 1. Hence `rirj − 1 cannot divide C0.

We will now use these lemmas to study the ramification at ` of an induced representation un-
der the assumption of regularity (possibly after a twist by a power of the cyclotomic character) and
boundedness of tame inertia weights.

Proposition 3.4. Let n,m, k ∈ N, a ∈ Z and let ` > kn! + 1 be a prime, K/Q a finite extension such
that [K : Q] ·m = n, ρ : GK → GLm(F`) a Galois representation and let β = Ind

GQ
GK
ρ. If χa` ⊗ β

is regular with tame inertia weights at most k, then K/Q does not ramify at `.

Proof. Assume that K/Q ramifies at `; we will derive a contradiction. First of all, let us fix some
notation: let N/Q be the Galois closure of K/Q, and let us fix a prime λ of N above `. Denote by
I` ⊂ GQ the inertia group at `, I`,w ⊂ I` the wild inertia group at ` and IN ⊂ GN the inertia group at
the prime λ. Let W be the F`-vector space underlying ρ. For each γ ∈ GQ, denote γK = γ(K) and
define γρ : GγK → GL(W ) by γρ(σ) = ρ(γσγ−1).

Let us now pick any γ ∈ GQ, σ ∈ I` and τ ∈ IN . Since I`/I`,w is cyclic, we have that the
commutator σ−1τστ−1 belongs to I`,w. Since IN ⊂ I` is normal, σ−1τσ ∈ IN ⊂ GN ⊂ GγK , so
we may apply γρ and conclude

γρ(σ−1τσ)γρ(τ−1) = γρ(σ−1τστ−1) ∈ γρ(I`,w),

hence γρ(σ−1τσ) and γρ(τ) have exactly the same eigenvalues.
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Since N/Q ramifies in `, we may pick σ ∈ I` \ GN , and since N =
∏
γ∈GQ

γK, there exists
some γ ∈ GQ such that σ 6∈ GγK . This implies that β(σγ)(W ) ∩ β(γ)(W ) = 0. Choose now a set
of left-coset representatives {γ1GK , . . . , γdGK} of GK in GQ with γ1 = γ and γ2 = σγ; Mackey’s
formula ([CR81], 10.13) implies that

Res
GQ
GN

Ind
GQ
GK
ρ =

d⊕
i=1

Res
GγiK
GN

γiρ.

Therefore β(τ) is a block-diagonal matrix, where one block is γρ(τ) and another block is σγρ(τ) =
γρ(σ−1τσ). But, by hypothesis, the tame inertia weights of χa` ⊗ β are bounded. By Lemma 3.3, we
have that the n!-powers of the characters on the diagonal of χa` ⊗ β|I` are all different, which implies
that the characters on the diagonal of β|IN are all different. Thus γρ(τ) and γρ(σ−1τσ) cannot have
the same eigenvalues for all τ ∈ IN .

3.3 Representations induced in two ways

We need a proposition concerning representations induced from different subgroups of a certain
group G.

Proposition 3.5. Let G be a finite group, N E G, H ≤ G. Assume (G : N) = n, and let p > n

be a prime. Let K be a field of characteristic coprime to |G| containing all |G|-th roots of unity. Let
S be a K[H]-module, χ : N → K× a character, say χ = χ1 ⊗ χ2, where χ1 : N → K× (resp.
χ2 : N → K×) has order equal to a nontrivial power of p (resp. not divisible by p). Assume

ρ := IndGH(S) = IndGN (χ),

and furthermore the n caracters {χσ1 : σ ∈ G/N} are different. Then N ≤ H .

Following 7.2 of [Ser77], ifG is a finite group and we are given twoG-modules V1 and V2, we will
denote by 〈V1, V2〉G := dim HomG(V1, V2). It is known (Lemma 2 of Chapter 7 of [Ser77]) that, if
ϕ1 and ϕ2 are the characters of V1 and V2, then 〈V1, V2〉G = 〈ϕ1, ϕ2〉G := 1

|G|
∑

g∈G ϕ1(g−1)ϕ2(g).
Before giving the proof, we will first prove a lemma.

Lemma 3.6. Let G be a group, N E G and H ≤ G such that (G : H) ≤ n. Let p be a prime such
that p > n, let K be a field of characteristic coprime to |G| containing all |G|-th roots of unity, and
let χ : N → K× be a character whose order is a nontrivial power of p. Then ResNH∩Nχ is not trivial.

Proof. Assume ResNH∩Nχ is trivial. Then H ∩ N ≤ kerχ. But kerχ ≤ N , and the index (N :

kerχ) ≥ p. Therefore (N : H ∩N) ≥ p. But on the other hand p > n ≥ (G : H) ≥ (HN : H) =

(N : N ∩H). Contradiction.

Proof of Proposition 3.5. Observe that ρ is irreducible. Namely, there is a well-known criterion char-
acterising when an induced representation is irreducible (cf. [Ser77], Proposition 23, Chapter 7). In
particular, since N is normal in G, we have that IndGNχ is irreducible if and only if χ is irreducible
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(which clearly holds) and, for all g ∈ G/N , (ResGN (χ))h is not isomorphic to ResGN (χ). This last
condition holds because the n characters {χσ1 : σ ∈ G/N} are different, and χ2 has order prime to p.

Since ρ is irreducible, we have that

1 = 〈ρ, ρ〉G = 〈IndGH(S), IndGN (χ)〉G = 〈S,ResGHIndGN (χ)〉H = · · · ,

where in the last step we used Frobenius reciprocity. Now we apply Mackey’s formula ([CR81],
10.13) on the right hand side; note that, since N is normal, H\G/N ' G/(H ·N):

· · · = 〈S,
⊕

γ∈G/(H·N)

IndHH∩NResNH∩N (χγ)〉H =
∑

γ∈G/(H·N)

〈S, IndHH∩NResNH∩N (χγ)〉H .

Hence there is a unique γ ∈ G/(H ·N) such that

〈S, IndHH∩NResNH∩N (χγ)〉H = 1.

If we prove that, for all γ, IndHH∩NResNH∩N (χγ) is irreducible, then we will have that

S ' IndHH∩NResNH∩N (χγ)

(for some γ), hence dim(S) = (H : H∩N). But, on the other hand, since ρ = IndGH(S) = IndGN (χ),
we have that dim(S) · (G : H) = (G : N), so

dim(S) =
(G : HN)(HN : N)

(G : HN)(HN : H)
=

(H : N ∩H)

(N : N ∩H)
,

and therefore the conclusion is that (N : N ∩H) = 1, in other words, N ≤ H .
Therefore to conclude we only need to see that IndHH∩NResNH∩N (χγ) is irreducible. Since con-

jugation by γ plays no role here, let us just assume γ = 1. We apply again the criterion characterising
when an induced representation is irreducible. In particular, since H ∩ N is normal in H , we have
that IndHH∩NResNH∩N (χ) is irreducible if and only if ResNH∩N (χ) is irreducible (which clearly holds)
and, for all h ∈ H/N ∩H , (ResNH∩N (χ))h is not isomorphic to ResNH∩N (χ).

So pick h ∈ H \ N . We have (ResNH∩N (χ))h = ResNH∩N (χh). Assume that ResNH∩N (χh) =

ResNH∩N (χ). In particular, we obtain that ResNH∩N (χh1) = ResNH∩N (χ1). By Lemma 3.6 it holds that
χ1 = χh1 as characters of N . But we know that for all σ ∈ G/N , χσ1 6= χ1. Now it suffices to observe
that H/(H ∩N) ↪→ G/N .

3.4 Proofs

Finally we carry out the proof of Theorem 1.5.

Lemma 3.7. Assume Set-up 1.4. Let k ∈ N, ` 6= p, q be a prime such that ` > kn! + 1 and ` - N . Let
χq : GQqn → Q×` be a character satisfying the assumptions of Lemma 3.1, and χq the composition of
χq with the reduction map Z` → F`. Let α : GQq → F×` be an unramified character.
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Let ρ : GQ → GSpn(F`) be a Galois representation, ramified only at the primes dividing Nq`,
such that a twist by some power of the cyclotomic character is regular in the sense of Definition 3.2
with tame inertia weights at most k, and satisfying (1) and (3) of Theorem 1.5. Then ρ is not induced
from a representation of an open subgroup H ( GQ.

Proof. Let H ⊂ GQ be an open subgroup, say of index h, and ρ′ : H → GLn/h(F`) a represent-
ation such that ρ ∼= Ind

GQ
H (ρ′). Call S1 ⊆ V the spaces underlying ρ′ and ρ, respectively, so that

ρ = Ind
GQ
H (S1). Recall that by assumption Res

GQ
GQq

(ρ) = Ind
GQq
GQqn

(χq) ⊗ α. We want to compute

Res
GQ
GQq

Ind
GQ
H (S1). Let us apply Mackey’s formula ([CR81], 10.13). By Lemma 3.1 we know that

Res
GQ
GQq

Ind
GQ
H (S1) = Ind

GQq
GQqn

(χq) ⊗ α is irreducible, so there can only be one summand in the
formula, hence

Res
GQ
GQq

Ind
GQ
H (S1) = Ind

GQq
GQq∩H

ResHGQq∩H(S1),

and therefore
Ind

GQq
GQq∩H

ResHGQq∩H(S1) = Ind
GQq
GQqn

(χq)⊗ α. (3.1)

We now apply Proposition 3.5 to Equation (3.1). Note that Res
GQ
GQq

ρ = Ind
GQq
GQqn

(χq) ⊗ α =

Ind
GQq
GQqn

(χq ⊗ (α|GQqn
)). We can write χq ⊗ (α|GQqn

) = χ1 ⊗ χ2, where χ1 has order a power of p

and χ2 has order prime to p. Note that the restriction of χq ⊗ (α|GQqn
) to the inertia group Iq of GQq

coincides with the restriction of χq, which has order p. Thus (χ1⊗χ2)|Iq = χq|Iq = χ1|Iq . Since the
order of q mod p is n, we know that the n characters χ1|Iq , χ

q
1|Iq , . . . χ

qn

1 |Iq are distinct. We can take
G = ρ(GQq) in the statement of Proposition 3.5, whose order is a divisor of 2np · ord(α) and, hence,
prime to `. It thus follows that GQqn ≤ (GQq ∩H).

Note that, on the one hand

n = dimV = dim(Ind
GQ
H S1) = (GQ : H) dim(S1).

On the other hand,

n = dim(Ind
GQq
GQq∩H

ResHGQq∩H(S1)) = (GQq : GQq ∩H) dim(S1),

hence (GQ : H) = (GQq : GQq ∩H).
Let L be the number field such that H = Gal(Q/L). Now Gal(Q/L) ∩ GQq = Gal(Qq/Lq),

where q is a certain prime of L above q and Lq denotes the completion of L at q. The inclusion
GQqn ≤ Gal(Qq/Lq) means that we have the following field inclusions:

Qq ⊆ Lq ⊆ Qqn ⊆ Qq

and [Lq : Qq] = (GQq : GQq ∩H) = (GQ : H) = [L : Q], hence q is inert in L/Q.
Let `1 be a prime dividing N1, let L̃/Q be a Galois closure of L/Q, Λ1 a prime of L̃ above `1

and I1 the inertia group of Λ1 over Q. Since gcd(|ρ(I`1)|, n!) = 1 and Gal(L̃/Q) has order dividing
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n!, we get that the projection of ρ(I1) ⊆ ρ(I`1) into ρ(GQ)/ρ(GL̃) is trivial. Thus, ρ(I1) ⊆ ρ(GL̃).
Hence L̃/Q is unramified at `1 and so is L/Q.

To sum up, we know that L can only be ramified at the primes dividing Nq`. But L cannot ramify
at q since Lq ⊆ Qqn (and Qqn is an unramified extension of Qq). We just saw that L cannot ramify
at the primes dividing N1. We also know that L cannot be ramified at ` (cf. Proposition 3.4). Hence
L only ramifies at the primes dividing N2. By the choice of q, it is completely split in L, and at the
same time inert in L. This shows L = Q and H = GQ.

Now we can easily prove our main result.

Proof of Theorem 1.5. Let G = Imρ. Since G contains a transvection, one of the following three
possibilities holds (cf. Corollary 1.2):

1. ρ is reducible.

2. There exists an open subgroup H ( GQ, say of index h with n/h even, and a representation
ρ′ : H → GSpn/h(F`) such that ρ ∼= Ind

GQ
H ρ′.

3. The group generated by the transvections in G is conjugated (in GSpn(F`)) to Spn(F`r) for some
exponent r.

By Lemma 3.1 G acts irreducibly on V , hence the first possibility cannot occur. By Lemma 3.7,
the second possibility does not occur. Hence the third possibility holds, and this finishes the proof of
the theorem.

Proof of Corollary 1.6. This follows from the main theorem of Part I ([AdDW13]) concerning the
application to the inverse Galois problem. In order to be able to apply it, there are two things to check:

Firstly, we note that ρ• is maximally induced of order p at the prime q. Secondly, the existence of
a transvection in the image of ρλ together with the special shape of the representation at q allow us to
conclude from Theorem 1.5 that the image of ρλ is huge for all λ|`, where ` runs through the rational
primes outside a density zero set.
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