Proc. of European Symposium on Artificial Neural Networks
125-130
Yes
European Symposium on Artificial Neural Networks
2003
[en] We present a variational Expectation-Maximization algorithm to learn probabilistic mixture models. The algorithm is similar to Kohonen's Self-Organizing Map algorithm and not limited to Gaussian mixtures. We maximize the variational free-energy that sums data log-likelihood and Kullback-Leibler divergence between a normalized neighborhood function and the posterior distribution on the components, given data. We illustrate the algorithm with an application on word clustering.