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Abstract. We present a variational Expectation-Maximization algo-
rithm to learn probabilistic mixture models. The algorithm is similar to
Kohonen’s Self-Organizing Map algorithm and not limited to Gaussian
mixtures. We maximize the variational free-energy that sums data log-
likelihood and Kullback-Leibler divergence between a normalized neigh-
borhood function and the posterior distribution on the components, given
data. We illustrate the algorithm with an application on word clustering.
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1 Introduction

Kohonen’s Self-Organizing Map (SOM) [5] is a data analysis method that com-
bines vector quantization with topology preservation. With each quantizer we
associate a fixed location in a ‘latent’ space. The latent space is of much lower
dimension (typically just two) than the data space. The SOM algorithm finds
locations for the quantizers in the data space such that the summed squared
distance from data to closest node is small and simultaneously topology is pre-
served. Topology preservation means that nearby components in latent space
are also nearby in the data space. As a consequence, data points associated
with nearby components in latent space are coming from similar locations in
the data space. Hence, to check if data points are ‘close’ in the data space, we
can check whether their associated components are close in the latent space.
Topology preservation makes SOMs useful for visualization of high dimensional
data since it reduces the data dimensionality while preserving small distances.

We present a constrained or variational Expectation-Maximization (EM)
learning algorithm to learn probabilistic mixture models similar to SOM. The
algorithm applies to a wide class of mixture models.

In the next section we discuss a Gaussian mixture model that will serve as
the example mixture model throughout the paper and also briefly discuss the
EM algorithm. In section 3 we present our Self-Organizing Mixtures algorithm.
We compare our algorithm to several closely related algorithms and present our
conclusions in Section 4.



2 A simple generative model and EM

As generative model consider the Mixture of Gaussians (MoG), given by :

k
p(x) = Zp(x | 5) for x € RP,
s=1

| =

where p(x|s) is an isotropic Gaussian with inverse variance 5 and mean p,. We
use this simple MoG to illustrate the similarity with SOM and because it keeps
notation simple. Given data x = {x1,...,Xn}, and an initial parameter vector
6 = {8,pq,..., 1} the EM algorithm finds a local maximizer @ of the log-
likelihood L£(0). Assuming data are independent and identically distributed:

N
£(6) = > logp(xi;0) = Y log 3 S plxa | 5)

Learning is facilitated by introducing N hidden variables. Each hidden variable
indicates which of the k mixture components generated the corresponding data
point. The EM algorithm maximizes the negative free-energy [6]:

F(Q,0) = Eqlogp(x,50) + H(Q) = L(0) — Dk1(Q || p(s | x;0)), (1)

where we used H and D to denote respectively entropy and Kullback-Leibler
(KL) divergence @ = [],, gn is a distribution over the hidden variables, g, is
a distribution on the mixture components for data point n. Note that, due to
the non-negativity of the KL-divergence, for any @ we have: F(Q,0) < L(0).

The two forms in which we expanded F' are associated with the M-step
and the E-step of EM. In the M-step we change 0 as to maximize, or at least
increase, F(Q,0). The first decomposition includes H(Q) which is a constant
w.r.t. 8, so we essentially maximize the joint log-likelihood in the M-step. In
the E-step we maximize F' w.r.t. (). Since the second decomposition includes
L(0) which is constant w.r.t. @, what remains is a KL divergence which is the
effective objective function in the E-step of EM.

In standard applications of EM (e.g. mixture modeling) @ is unconstrained,
which results in setting ¢, = p(s | x,,;0) in the E-step since the non-negative
KL divergence equals zero if and only if both arguments are equal. There-
fore, after each E-step F(Q,6) = £(0). Variational methods are for exam-
ple used when optimization over the unconstrained @ is intractable, in which
case (Q is restricted to a certain class Q of distributions allowing for tractable
computations. Variational EM maximizes F instead of £, the objective sums
log-likelihood and a penalty which is high if the true posterior is far from any
member of Q.

3 Using free-energy for self-organization

By appropriately constraining () we can enforce a topological ordering of the
mixture components, as we explain below. By using the right class O, the



penalty term measures topological ordering. This is much like the approach
taken in [7], where constraints on @ are used to globally align the local coordi-
nate systems of the components of a probabilistic mixture of factor analyzers.

We associate with each mixture component s a latent coordinate g,. It is
convenient to take the components as located on a regular grid in the latent
space. We then restrict the distributions ¢, to be discretized isotropic Gaus-
sians in the latent space, centered on one of the components. The distributions
qn can be regarded as normalized neighborhood function of Kohonen’s SOM.
We thus put the constraint that ¢, € Q = {p1,...,pr}, where:

or(s)— PN g )
Sooxp (A g )

A small X corresponds to a broad distribution, and for large A the distribution
p becomes more peaked. For fixed A we can always increase or keep constant
the objective by performing EM steps, since in the E-step we can always keep
Q fixed or change @ if this increases the objective function.

Since the objective function might have local optima and EM is only guar-
anteed to give locally optimal solutions, good initialization of the parameters
of the mixture model is essential to finding a good solution. Analogous to the
method of shrinking the extent of the neighborhood function with the SOM,
we can start with a small A (broad neighborhood function) and increase it iter-
atively until a desired value is reached. In implementations we started with A
such that the p, are close to uniform over the components, then we run the EM
algorithm until convergence. Note that if the p, are almost uniform the initial-
ization of @ becomes irrelevant. After convergence we set A"¢% « n\° with
1 > 1 (typically 7 is close to unity). In order to initialize the EM procedure
with A" we initialize @ with the value found in running EM with A\°9,

Using ¢ns = gn(s), for our MoG case F' can be rewritten as:

1
F(Q.0) = 5NDIog 5= 3 gus |8 Il %0 — 1, I /24108 gus .

For fixed A an EM algorithm can be derived by differentiation:

e E: Determine (by means of exhaustive or sparse search in Q, see below)
for each x,, the distribution p,~ € Q that maximizes F, set ¢, = py+.

e M: Set: Hs = Zn qnsxn/ Zn dns and ﬂ = ND/ Zns Ans || Xn = Mg H2

The component 7* on which p,~ is centered for data point n, is referred to as
the ‘winner’ for x,,.

The computational cost of the E-step is O(Nk?), a factor k slower than
SOM and prohibitive in large-scale applications. However, by restricting the
search for a winner in the E-step to a limited number of candidate winners we
can obtain an O(Nk) algorithm. A straightforward choice is to use the [ com-
ponents with the largest joint likelihood p(x,s) as candidates, corresponding
for our MoG to smallest Euclidean distance to the data point. If none of the



candidates yields a higher value of F(Q,8) we keep the winner of the previous
step, in this way we are guaranteed to increase the objective in every step. We
found [ = 1 to work well and fast in practice, in this case we only check whether
the winner from the previous round should be replaced with the closest node.

Let us consider why our algorithm yields topology preservation. Consider
the second decomposition of the objective function (1), and two mixtures, pa-
rameterized by @ and @', that yield equal data log-likelihood £(8) = L£(6").
The objective function prefers the mixture for which the KL-divergences are
the smallest, i.e. the mixture for which the posterior on the mixture compo-
nents looks like a discretized Gaussian in the latent space. This implies that
nearby components in the latent space model similar data. Moreover, we see
the same effect as in SOM: for each data item a winning mixture component is
selected and next the winning component and its neighbors in the latent space
(to a lesser degree) are tuned toward that data item. Note that these observa-
tions hold for any mixture model and that the algorithm is readily generalized
to any mixture model for which we have a maximum-likelihood EM algorithm.

4 Discussion, illustration, and conclusions

Discussion. Our algorithm is very close to SOM when applied on the simple
MoG. If we use only | = 1 candidate winner in the E-step the difference with
Kohonen’s winner selection is that we only accept the closest node as a winner
when it increases the energy and keep the previous winner otherwise. Our
M-step coincides exactly with the update rule of the batch SOM.

In [3, 4] another SOM-like algorithm is proposed with objective function:

*ans[ﬂzhm’ | %n — p, || /2 +10g qns]-

There, the neighborhood function, implemented by the hg,, is fixed, but the
winner assignment is soft. Instead of selecting one ‘winner’, an unconstrained
distribution ¢, over the components is used. The ( is used for annealing:
for very small 8 the entropy term, with only one global optimum, becomes
dominant, whereas for large 3 the quantization error, with many local optima,
becomes dominant. By gradually increasing § more and more structure is
added to the objective function.

Our work differs in several ways. We use one localized distribution in the
latent space to constrain q,, as opposed to a mixture of localized distributions
in the latent space. As a consequence the easy speed-up of our algorithm does
not apply to the algorithms in [3, 4]. We use the neighborhood function width
(controlled by M) for annealing as opposed to using 3. Note that although
both A and (8 can be used for annealing, only 3 can be optimized efficiently
as a free parameter. Both our objective function and the one of [3, 4] can be
interpreted as a log-likelihood plus a penalty term for non-topology preserving
configurations. We believe the interpretation provided in this work is more



direct and applies trivially to any mixture model, whereas for the interpretation
of [3, 4] it is not clear whether it applies to any mixture model.
Another similar model is presented in [1]. There, in the E-step we set:

Gn —argmaXZpr p(Xnls).

The M-step finds a new parameter vector that maximizes:
21083 an(s)plxals)

This algorithm does not optimize a single likelihood function, even if we keep
the neighborhood function width fixed, since the mixing weights vary for each
data item and change throughout the iterations of the algorithm. The algo-
rithm has run-time O(nk?), but can benefit from the same speed-up used here.

The Generative Topographic Map (GTM) [2] achieves topographic organi-
zation in a quite different manner. In GTM mixture components are param-
eterized by a linear combination of nonlinear basis functions of the locations
of the components in the latent space. The parameters of the linear map are
learned from data by maximizing the data log-likelihood. The number of basis
functions and their smoothness have to be fixed in advance or are found by
model selection procedures. Other maximum-likelihood approaches achieve to-
pographic organization by a smoothness prior [8] on the parameters. However,
for this method is it not clear whether it generalizes directly any mixture model
and whether speed-ups can be applied to avoid O(nk?) run-time.

Illustration. Figure 1 shows results of modeling word occurrence data on a
part of the 20 newsgroup data set, word x,, is shown at g, = > p(s|x,)gs.
Each of the 100 words is a data item with 16242 binary features indicating its
occurrence in each of 16242 documents. We learned a mixture with our algo-
rithm, where each mixture component is a product of Bernoulli distributions:

16242 _
p(Xnls) H Poi (1= py,i) 7).

Due to the huge dimensionality of this data, the posteriors are rather peaked,
resulting in g, almost equal to one of the g5. Therefore, we did not use the
actual posterior but the distribution p’(s|x,,) o p(s|x,)® for @ < 1 such that the
entropies of the p’(s|x,,) were close to two bits, giving a smoother visualization.

Conclusions. We presented a penalized log-likelihood probabilistic mixture
modeling method, similar to Kohonen’s SOM. The probabilistic formulation
offers several benefits: (i) The method is directly applicable to any mixture
model for i.i.d. data for which we can write down an EM algorithm. (ii) The
generative model allows seamless embedding in larger probabilistic systems. It
is for example straightforward to learn mixtures of Self-Organizing maps. (iii)
There is a direct and clear link to the mixture model data log-likelihood.
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Figure 1: Self-organizing Bernoulli models, k£ = 25. Right plot zooms left.

References

1

A. Anouar, F. Bedran, and S. Thiria. Probabilistic self organized map: ap-
plication to classification. In M. Verleysen, editor, Proceedings of European
Symposium on Artificial Neural Networks, Belgium, 1997. D-Facto.

C. M. Bishop, M. Svensén, and C. K. I Williams. GTM: The generative
topographic mapping. Neural Computation, 10:215-234, 1998.

T. Graepel, M. Burger, and K. Obermayer. Self-organ. maps: generaliza-
tions and new optimiz. techniques. Neurocomputing, 21:173-190, 1998.

T. Heskes. Self-organizing maps, vector quantization, and mixture model-
ing. IEEE Transactions on Neural Networks, 12:1299-1305, 2001.

T. Kohonen. Self-Organizing Maps. Springer, 2001.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M.I. Jordan, editor, Learning in
Graphical Models, pages 355-368. Kluwer, 1998.

S.T. Roweis, L.K. Saul, and G.E. Hinton. Global coordination of local
linear models. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14. MIT Press, 2002.

A. Utsugi. Density estimation by mixture models with smoothing priors.
Neural Computation, 10(8):2115-2135, 1998.



