[en] We give an integral representation of $K$-positive definite functions on a real rank $n$ connected, noncompact, semisimple Lie group with finite centre. Moreover, we characterize the $\lambda$'s for which the $\tau$-spherical function $\phi_{\sigma,\lambda}^\tau$ is positive definite for the group $G=\mathrm{Spin}_e(n,1)$ and the complex spin representation $\tau$.
Disciplines :
Mathématiques
Auteur, co-auteur :
PUSTI, Sanjoy ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
AN ANALOGUE OF KREIN’S THEOREM FOR SEMISIMPLE LIE GROUPS
Date de publication/diffusion :
2011
Titre du périodique :
Pacific Journal of Mathematics
ISSN :
0030-8730
eISSN :
1945-5844
Maison d'édition :
University of California, Berkeley, Etats-Unis - Californie