Profil

CREMASCHI Tommaso

University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Mathematics > Team Jean-Marc SCHLENKER

Main Referenced Co-authors
Krifka, Yannick (2)
Dello Schiavo, Lorenzo (1)
GIOVANNINI, Viola  (1)
MARTINEZ GRANADO, Didac  (1)
Martinez Granado, Didac (1)
Main Referenced Keywords
Geometry and Topology (1); Hyperbolic geometry (1); Mathematical Physics (1); Mathematics (miscellaneous) (1); Physics and Astronomy (all) (1);
Main Referenced Disciplines
Mathematics (4)

Publications (total 4)

The most downloaded
26 downloads
CREMASCHI, T., GIOVANNINI, V., & SCHLENKER, J.-M. (November 2025). Filling Riemann surfaces by hyperbolic Schottky manifolds of negative volume. Journal of Geometry and Physics, 217, 105628. doi:10.1016/j.geomphys.2025.105628 https://hdl.handle.net/10993/65787

The most cited

1 citations (Scopus®)

CREMASCHI, T., Krifka, Y., MARTINEZ GRANADO, D., & Pallete, F. V. (2023). VOLUME BOUND FOR THE CANONICAL LIFT COMPLEMENT OF A RANDOM GEODESIC. Transactions of the American Mathematical Society. Series B, 10 (28), 988 - 1038. doi:10.1090/btran/152 https://hdl.handle.net/10993/67009

CREMASCHI, T., GIOVANNINI, V., & SCHLENKER, J.-M. (November 2025). Filling Riemann surfaces by hyperbolic Schottky manifolds of negative volume. Journal of Geometry and Physics, 217, 105628. doi:10.1016/j.geomphys.2025.105628
Peer Reviewed verified by ORBi

CREMASCHI, T., Krifka, Y., MARTINEZ GRANADO, D., & Pallete, F. V. (2023). VOLUME BOUND FOR THE CANONICAL LIFT COMPLEMENT OF A RANDOM GEODESIC. Transactions of the American Mathematical Society. Series B, 10 (28), 988 - 1038. doi:10.1090/btran/152
Peer Reviewed verified by ORBi

CREMASCHI, T., & Dello Schiavo, L. (02 November 2022). EFFECTIVE CONTRACTION OF SKINNING MAPS. Proceedings of the American Mathematical Society, Series B, 9, 445–459.
Peer Reviewed verified by ORBi

CREMASCHI, T., Krifka, Y., Vargas Pallete, F., & Martinez Granado, D. (n.d.). Volume of complement of random geodesics. Transactions of the American Mathematical Society.
Peer Reviewed verified by ORBi

Contact ORBilu