BRUCE, A. (October 2021). Is the Z2xZ2-graded sine-Gordon equation integrable? Nuclear Physics B, 971, 115514. doi:10.1016/j.nuclphysb.2021.115514 Peer Reviewed verified by ORBi |
BRUCE, A., IBARGUENGOYTIA, E., & PONCIN, N. (16 June 2021). Linear Z2n-Manifolds and Linear Actions. Symmetry, Integrability and Geometry: Methods and Applications, 17 (060), 58. doi:10.3842/SIGMA.2021.060 Peer Reviewed verified by ORBi |
BRUCE, A., & Duplij, S. (December 2020). Double-Graded Quantum Superplane. Reports on Mathematical Physics, 86 (3), 383-400. doi:10.1016/S0034-4877(20)30089-6 Peer reviewed |
BRUCE, A., IBARGUENGOYTIA, E., & PONCIN, N. (2020). Linear Z2n-Manifolds and Linear Actions. (1). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/44597. |
BRUCE, A., & Grabowski, J. (October 2020). Odd connections on supermanifolds: existence and relation with affine connections. Journal of Physics. A, Mathematical and Theoretical, 53 (45), 455203. doi:10.1088/1751-8121/abb9f0 Peer Reviewed verified by ORBi |
BRUCE, A. (October 2020). ${\mathbb{Z}}_{2}{\times}{\mathbb{Z}}_{2}$-graded supersymmetry: 2-d sigma models. Journal of Physics. A, Mathematical and Theoretical, 53 (45), 455201. doi:10.1088/1751-8121/abb47f Peer Reviewed verified by ORBi |
BRUCE, A., & Grabowski, J. (September 2020). Riemannian Structures on Z 2 n -Manifolds. Mathematics, 8 (9), 1469. doi:10.3390/math8091469 Peer reviewed |
BRUCE, A., IBARGUENGOYTIA, E., & PONCIN, N. (08 January 2020). The Schwarz-Voronov embedding of Z_2^n - manifolds. Symmetry, Integrability and Geometry: Methods and Applications, 16 (002), 47. doi:10.3842/SIGMA.2020.002 Peer Reviewed verified by ORBi |
BRUCE, A. (2020). Almost Commutative Q-algebras and Derived brackets. Journal of Noncommutative Geometry. doi:10.4171/JNCG/377 Peer reviewed |
BRUCE, A., & Duplij, S. (2020). Double-Graded Supersymmetric Quantum Mechanics. Journal of Mathematical Physics, 61, 063503. doi:10.1063/1.5118302 Peer Reviewed verified by ORBi |
BRUCE, A. (2020). Modular Classes of Q-Manifolds, Part II: Riemannian Structures & Odd Killing Vectors Fields. Archivum Mathematicum. doi:10.5817/AM2020-3-153 Peer reviewed |
BRUCE, A. (2020). The super-Sasaki metric on the antitangent bundle. International Journal of Geometric Methods in Modern Physics. doi:10.1142/S0219887820501224 Peer reviewed |
BRUCE, A., & PONCIN, N. (2020). Functional analytic issues in Z_2 ^n Geometry. Revista de la Union Matematica Argentina, 60 (2), 611-636. doi:10.33044/revuma.v60n2a21 Peer reviewed |
BRUCE, A., IBARGUENGOYTIA, E., & PONCIN, N. (2019). Conference 'Supergeometry, Supersymmetry and Quantization'. https://orbilu.uni.lu/handle/10993/41526 |
BRUCE, A. (19 January 2019). On a Z2n-Graded Version of Supersymmetry. Symmetry, 11(1) (116). doi:10.3390/sym11010116 Peer reviewed |
BRUCE, A., & Grabowski, J. (2019). Pre-Courant algebroids. Journal of Geometry and Physics, 142, 254-273. doi:10.1016/j.geomphys.2019.04.007 Peer reviewed |
BRUCE, A., & IBARGUENGOYTIA, E. (2019). The graded differential geometry of mixed symmetry tensors. Archivum Mathematicum, 55 (2), 123-137. doi:10.5817/AM2019-2-123 Peer reviewed |
BRUCE, A., & PONCIN, N. (2019). Products in the category of Z_2^n manifolds. Journal of Nonlinear Mathematical Physics, 26 (3), 420-453. doi:10.1080/14029251.2019.1613051 Peer Reviewed verified by ORBi |
BRUCE, A., Grabowska, K., & Grabowski, J. (2018). On the Concept of a Filtered Bundle. International Journal of Geometric Methods in Modern Physics, 15, 34. doi:10.1142/S0219887818500135 Peer reviewed |
BRUCE, A., Grabowski, J., & Vitagliano, L. (2018). Representations up to Homotopy from Weighted Lie Algebroids. Journal of Lie Theory, 28 (3), 715-737. Peer reviewed |
BRUCE, A. (2018). Connections adapted to non-negatively graded structure. International Journal of Geometric Methods in Modern Physics. doi:10.1142/S021988781950021X Peer Reviewed verified by ORBi |
BRUCE, A., & PONCIN, N. (2017). Workshop on Supergeometry and Applications. https://orbilu.uni.lu/handle/10993/33780 |
BRUCE, A., Grabowska, K., & Moreno, G. (December 2017). On a geometric framework for Lagrangian supermechanics. Journal of Geometric Mechanics, 9 (4), 411 - 437. doi:10.3934/jgm.2017016 Peer Reviewed verified by ORBi |
BRUCE, A. (2017). Modular classes of Q-manifolds: a review and some applications. Archivum Mathematicum. doi:10.5817/AM2017-4-203 Peer reviewed |
BRUCE, A., Grabowska, K., & Grabowski, J. (26 July 2017). Remarks on Contact and Jacobi Geometry. Symmetry, Integrability and Geometry: Methods and Applications, 13 (059), 22. doi:10.3842/SIGMA.2017.059 Peer Reviewed verified by ORBi |
BRUCE, A., Grabowska, K., & Grabowski, J. (2016). Remarks on contact and Jacobi geometry. (2). ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/29804. |