Profil

LEROY Julien

Main Referenced Co-authors
Berthé, V. (2)
Charlier, Emilie (2)
De Felice, C. (2)
De Felice, Clelia (2)
Dolce, F. (2)
Main Referenced Keywords
Mathematics - Combinatorics (3); Computer Science - Discrete Mathematics (2); factor complexity (1); Rauz y graph (1); S-adic conjecture (1);
Main Referenced Disciplines
Mathematics (36)
Computer science (1)

Publications (total 37)

The most downloaded
108 downloads
Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Bifix codes and interval exchanges. Journal of Pure and Applied Algebra. doi:10.1016/j.jpaa.2014.09.028 https://hdl.handle.net/10993/18090

The most cited

40 citations (Scopus®)

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Acyclic, connected and tree sets. Monatshefte für Mathematik. doi:10.1007/s00605-014-0721-4 https://hdl.handle.net/10993/11671

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). The finite index basis property. Journal of Pure and Applied Algebra. doi:10.1016/j.jpaa.2014.09.014
Peer Reviewed verified by ORBi

Leroy, J. (September 2014). Return words in tree sets [Paper presentation]. Journées montoises.

Leroy, J. (July 2014). Return words in tree sets [Paper presentation]. Exposé ua séminaire hebdomadaire.

Leroy, J. (April 2014). S-adic characterization of sequence with complexity 2n [Paper presentation]. Exposé au séminaire hebdomadaire.

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Maximal bifix decoding. Discrete Mathematics. doi:10.1016/j.disc.2014.12.010
Peer Reviewed verified by ORBi

Charlier, E., Leroy, J., & Rigo, M. (2014). An analogue of Cobham's theorem for graph directed iterated function systems. Advances in Mathematics. doi:10.1016/j.aim.2015.04.008
Peer reviewed

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Acyclic, connected and tree sets. Monatshefte für Mathematik. doi:10.1007/s00605-014-0721-4
Peer Reviewed verified by ORBi

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Bifix codes and interval exchanges. Journal of Pure and Applied Algebra. doi:10.1016/j.jpaa.2014.09.028
Peer Reviewed verified by ORBi

Leroy, J. (January 2014). Different frameworks for cobham's theorem in R [Paper presentation]. Representing streams II.

Leroy, J. (2014). An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n + 1) - p(n) ≤ 2. Discrete Mathematics and Theoretical Computer Science, 16 (1), 233--286.
Peer reviewed

Leroy, J. (January 2014). Factor complexity of S-adic sequences [Paper presentation]. Séminaire ALGO du LIGM, Marne-la-Vallée, France.

Leroy, J. (December 2013). An analogue of Cobham's theorem for graph directed iterated function systems [Paper presentation]. Séminaire de l'équipe de mathématiques discrètes, Liège, Belgium.

Leroy, J. (November 2013). A bridge between graph directed iterated function systems and Büchi automata [Paper presentation]. Workshop on Dynamics, Numeration and Tillings, Florianopolis, Brazil.

Leroy, J. (September 2013). Factor complexity of S-adic sequences [Paper presentation]. Groupe de recherche DYSCO, Louvain-La-Neuve, Belgium.

Leroy, J. (June 2013). Factor complexity of S-adic sequences [Paper presentation]. Workshop on Dynamical systems, Automata and Algorithm of the GDR IM, Amiens, France.

Durand, F., Leroy, J., & Richomme, G. (2013). Do the properties of an $S$-adic representation determine factor complexity? Journal of Integer Sequences, 16 (2), 13.2.6, 30.
Peer reviewed

Leroy, J., & Richomme, G. (2013). A combinatorial proof of $S$-adicity for sequences with linear complexity. Integers, 13, 5, 19.
Peer Reviewed verified by ORBi

Leroy, J. (2013). An S-adic characterization of minimal subshifts with first difference of complexity 1 <=p(n+1)-p(n)<=2. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/11662.

Charlier, E., Leroy, J., & Rigo, M. (2013). Cobham's theorem for abstract numeration systems. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/11668.

Leroy, J. (July 2012). S-adic representations using Rauzy graphs [Paper presentation]. Workshop on Decidability problems for substitutive sequences, tilings and numerations of the ANR SubTiles, Amiens, France.

Leroy, J. (June 2012). Overview of the S-adic conjecture [Paper presentation]. Seminaire de l'équipe de topologie et dynamique de Paris Sud.

Leroy, J. (February 2012). Overview of the S-adic conjecture [Paper presentation]. Outstanding challenges in combinatorics on words, Banff, Canada.

Leroy, J. (2012). Contribution à la résolution de la conjecture S-adique [Doctoral thesis, UPJV - Université de Picardie Jules Verne]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/14864

Leroy, J. (2012). Some improvements of the $S$-adic conjecture. Advances in Applied Mathematics, 48 (1), 79--98. doi:10.1016/j.aam.2011.03.005
Peer reviewed

Durand, F., & Leroy, J. (2012). $S$-adic conjecture and Bratteli diagrams. Comptes Rendus. Mathématique, 350 (21-22), 979--983. doi:10.1016/j.crma.2012.10.015
Peer reviewed

Leroy, J. (January 2012). Overview of the S-adic conjecture [Paper presentation]. Premier Congrès Franco-Chilien en Dynamique et Combinatoire, Cap Hornu, France.

Durand, F., Leroy, J., & Richomme, G. (June 2011). Towards a statement of the S-adic conjecture through examples [Paper presentation]. Numeration 2011.

Leroy, J. (June 2011). Overview of the S-adic conjecture [Paper presentation]. First european meeting of Ph. D. Students in mathematics, Amiens, France.

Leroy, J. (June 2011). Exemples et contre-exemples sur la conjecture S-adique [Paper presentation]. Groupe de recherche ARITH, Montpellier, France.

Leroy, J. (March 2011). Some improvements of the S-adic conjecture [Paper presentation]. Ecole jeunes chercheurs en Informatique Théorique, Amiens, France.

Leroy, J. (March 2011). Conjecture S-adique [Paper presentation]. Journée des doctorants d'Amiens.

Leroy, J. (December 2010). The S-adic conjecture: general case and complexity 2n [Paper presentation]. School on Information and Randomness, Pucon, Chile.

Leroy, J. (October 2010). Conjecture S-adique [Paper presentation]. Research group Pytheas Fogg, Marseille, France.

Leroy, J. (September 2010). Some improvements of the $S$-adic conjecture (extended abstract) [Paper presentation]. 13th Mons Days of Theoretical Computer Science.

Leroy, J. (May 2010). Initiation à Sage [Paper presentation]. Seminaire de l'équipe probabilité et théorie ergodique, Amiens, France.

Leroy, J. (2009). Autour de la conjecture S-adique [Paper presentation]. Seminaire de l'équipe probabilité et théorie ergodique, Amiens, France.

Leroy, J. (October 2008). Systèmes de numération en base rationnelle [Paper presentation]. Séminaire des doctorants, Amiens, France.

Contact ORBilu