Article (Scientific journals)
On the characterization of generalized Dhombres equations having non constant local analytic or formal solutions
Reich, Ludwig; TOMASCHEK, Jörg
2013In Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica, 41, p. 281-294
Peer reviewed
 

Files


Full Text
281_41.pdf
Publisher postprint (338.37 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Dhombres functional equation; formal power series
Abstract :
[en] We discuss solvability conditions of the generalized Dhombres functional equation in the complex domain. Our focus lies on the so-called 'infinity' case, but also the $z_0$--case is investigated. That means that we consider solutions of a generalized Dhombres equation with initial value $f(\infty)=w_0$, $w_0 \neq 0$, or $f(\infty)=\infty$, or $f(z_0)=1$ for $z_0 \neq 0, \infty$. For both situations we give a characterization of the generalized Dhombres equations which are solvable.
Research center :
Mathematics Research Unit
Disciplines :
Mathematics
Author, co-author :
Reich, Ludwig;  Karl-Franzens-Universität (Graz) > Institute for Mathematics and Scientific Computations
TOMASCHEK, Jörg ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Language :
English
Title :
On the characterization of generalized Dhombres equations having non constant local analytic or formal solutions
Publication date :
05 November 2013
Journal title :
Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica
ISSN :
0138-9491
Publisher :
Eötvös Loránd University, Budapest, Hungary
Volume :
41
Pages :
281-294
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 05 November 2013

Statistics


Number of views
81 (3 by Unilu)
Number of downloads
0 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu