multi-criteria analysis; interacting criteria; capacities; Choquet integral
Résumé :
[en] We define an aggregation function to be (at most) k-intolerant if it is bounded from above by its kth lowest input value. Applying this definition to the discrete Choquet integral and its underlying capacity, we introduce the concept of k-intolerant capacities which, when varying k from 1 to n, cover all the possible capacities on n objects. Just as the concepts of k-additive capacities and p-symmetric capacities have been previously introduced essentially to overcome the problem of computational complexity of capacities, k-intolerant capacities are proposed here for the same purpose but also for dealing with intolerant or tolerant behaviors of aggregation.
Disciplines :
Méthodes quantitatives en économie & gestion Mathématiques
Auteur, co-auteur :
MARICHAL, Jean-Luc ; University of Luxembourg > Faculty of Law, Economics and Finance > Applied Mathematics Unit (SMA)
Langue du document :
Anglais
Titre :
k-intolerant capacities and Choquet integrals
Date de publication/diffusion :
février 2004
Nom de la manifestation :
25th Linz Seminar on Fuzzy Set Theory (LINZ 2004)
Lieu de la manifestation :
Linz, Autriche
Date de la manifestation :
from 03-02-2004 to 07-02-2004
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proc. 25th Linz Seminar on Fuzzy Set Theory (LINZ 2004): Mathematics of Fuzzy Systems
Editeur scientifique :
Klement, Erich Peter
Pap, Endre
Maison d'édition :
Universitätsdirektion, Johannes Kepler Universität, Linz, Autriche