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Abstract

We define an aggregation function to be (at most) k-intolerant if it is bounded from above
by its kth lowest input value. Applying this definition to the discrete Choquet integral and its
underlying capacity, we introduce the concept of k-intolerant capacities which, when varying
k from 1 to n, cover all the possible capacities on n objects. Just as the concepts of k-
additive capacities and p-symmetric capacities have been previously introduced essentially to
overcome the problem of computational complexity of capacities, k-intolerant capacities are
proposed here for the same purpose but also for dealing with intolerant or tolerant behaviors
of aggregation.
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1 Introduction

In a previous work [7] the author investigated the intolerant behavior of the discrete Choquet
integral when used to aggregate interacting criteria. Roughly speaking, the Choquet integral Cv,
or equivalently its associated capacity v, has an intolerant behavior if its output (aggregated)
value is often close to the lowest of its input values. More precisely, consider the domain [0, 1]n

of Cv as a probability space, with uniform distribution, and the mathematical expectation of Cv,
which expresses the typical position of Cv within the unit interval. A low expectation then means
that the Choquet integral is rather intolerant and behaves nearly like the minimum on average.
Similarly, a high expectation means that the Choquet integral is rather tolerant and behaves
nearly like the maximum on average. Note that such an analysis is meaningless when criteria are
independent since, in that case, the Choquet integral boils down to a weighted arithmetic mean
whose expectation is always one half (neither tolerant nor intolerant.)

In this paper we pursue this idea by defining k-intolerant Choquet integrals 1. The case k = 1
corresponds to the unique most intolerant Choquet integral, namely the minimum. The case k = 2
corresponds to the subclass of n-variable Choquet integrals that are bounded from above by their
second lowest input values. Those Choquet integrals are more or less intolerant but not as much
as the minimum. As an example, the following 3-variable Choquet integral

Cv(x1, x2, x3) =
1
2

min(x1, x2) +
1
2

min(x1, x3)

is clearly 2-intolerant, while being different from the minimum.
1Equivalently, we define k-intolerant capacities since there is a one-to-one correspondence between n-variable

Choquet integrals and capacities defined on n objects.
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More generally, denoting by x(1), . . . , x(n) the order statistics resulting from reordering x1, . . . , xn

in the nondecreasing order, we say that an n-variable Choquet integral Cv, or equivalently its un-
derlying capacity v, is at most k-intolerant if

Cv(x) ≤ x(k) (x ∈ [0, 1]n) (1)

and it is exactly k-intolerant if, in addition, there is x∗ ∈ [0, 1]n such that Cv(x∗) > x∗(k−1), with
convention that x(0) := 0.

Interestingly, condition (1) clearly implies that the output value of Cv is zero whenever at least
k input values are zeros. We will see in Section 3 that the converse holds true as well.

At first glance, defining k-intolerant aggregation functions may appear as a pure mathematical
exercise without any real application behind. In fact, in many real-life decision problems, experts
or decision-makers are or must be intolerant. This is often the case when, in a given selection
problem, we search for most qualified candidates among a wide population of potential alternatives.
It is then sensible to reject every candidate which fails at least k criteria.

Example 1.1. Consider a (simplified) problem of selecting candidates applying for a university
permanent position and suppose that the evaluation procedure is handled by appointed expert-
consultants on the basis of the following academic selection criteria:

1. Scientific value of curriculum vitae,

2. Teaching effectiveness,

3. Ability to supervise staff and work in a team environment,

4. Ability to communicate easily in English,

5. Work experience in the industry,

6. Recommendations by faculty and other individuals.

Assume also that one of the rules of the evaluation procedure states that the complete failure
of any two of these criteria results in automatic rejection of the applicant. This quite reasonable
rule forces the Choquet integral, when used for the aggregation procedure, to be 2-intolerant, thus
restricting the class of possible Choquet integrals for such a selection problem.

On the other hand, there are real-life situations where it is recommended to be tolerant,
especially if the criteria are hard to meet simultaneously and if the potential alternatives are not
numerous. To deal with such situations, we introduce k-tolerant aggregation functions and we
will say that an n-variable Choquet integral Cv, or equivalently its underlying capacity v, is at
most k-tolerant if

Cv(x) ≥ x(n−k+1) (x ∈ [0, 1]n).

In that case, the output value of Cv is one whenever at least k input values are ones.

Example 1.2. Consider a family who consults a Real Estate agent to buy a house. The parents
propose the following house buying criteria:

1. Close to a school,

2. With parks for their children to play in,

3. With safe neighborhood for children to grow up in,

4. At least 100 meters from the closest major road,
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5. At a fair distance from the nearest shopping mall,

6. Within reasonable distance of the airport.

Feeling that it is likely unrealistic to satisfy all six criteria simultaneously, the parents are ready
to accept a house that would fully succeed any five over the six criteria. If a 6-variable Choquet
integral is used in this selection problem, it must be 5-tolerant.

Considering k-intolerant and k-tolerant capacities can also be viewed as a way to make real
applications easier to model from a computational viewpoint. Those “simplified” capacities indeed
require less parameters than classical capacities (actually O(nk−1) parameters instead of O(2n);
see Section 3). Moreover, when varying k from 1 to n, we clearly recover all the possible capacities
on n objects.

Notice however that this idea of partitioning capacities into subclasses is not new. Grabisch [3]
proposed the k-additive capacities, which gradually cover all the possible capacities starting from
additive capacities (k = 1). Later, Miranda et al. [8] introduced the p-symmetric capacities,
also covering the possible capacities but starting from symmetric capacities (p = 1). Note also
that other approaches to overcome the exponential complexity of capacities have also been previ-
ously proposed in the literature: Sugeno λ-measures [10], ⊥-decomposable measures (see e.g. [5]),
hierarchically decomposable measures [11], distorted probabilities (see e.g. [9]) to name a few.

2 Basic definitions

Let F : [0, 1]n → [0, 1] be an aggregation function. By considering the cube [0, 1]n as a probability
space with uniform distribution, we can compute the mathematical expectation of F , that is,

E(F ) :=
∫

[0,1]n
F (x) dx. (2)

This value gives the average position of F within the interval [0, 1].
When F is internal (i.e., min ≤ F ≤ max) then it is convenient to rescale E(F ) within the

interval [E(min), E(max)]. This leads to the following normalized and mutually complementary
values [1, 7]:

andness(F ) :=
E(max)− E(F )

E(max)−E(min)
(3)

orness(F ) :=
E(F )− E(min)

E(max)−E(min)
(4)

Thus defined, the degree of andness (resp. orness) of F represents the degree or intensity
(between 0 and 1) to which the average value of F is close to that of “min” (resp. “max”). In
some sense, it also reflects the extent to which F behaves like the minimum (resp. the maximum)
on average.

Define the kth order statistic function OSk : [0, 1]n → [0, 1] as

OSk(x) = x(k) (x ∈ [0, 1]n),

where x(k) is the kth lowest coordinate of x. It can be proved [7] that

E(OSk) =
k

n + 1
(k ∈ {1, . . . , n})

and hence the set {E(OSk) | k = 1, . . . , n} partitions the unit interval [0, 1] into n+1 equal-length
subintervals.
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Now, as mentioned in the introduction, when a function F : [0, 1]n → [0, 1] is used to aggregate
decision criteria, it is clear that the more E(F ) is low, the more F has an intolerant behavior.
This suggests the following definition:

Definition 2.1. Let k ∈ {1, . . . , n}. An aggregation function F : [0, 1]n → [0, 1] is at most k-
intolerant if F ≤ OSk. It is k-intolerant if, in addition, F � OSk−1, where OS0 := 0 by convention.

It follows immediately from this definition that, for any k-intolerant function F , we have
E(F ) ≤ E(OSk) and, if F is internal, we have andness(F ) ≥ andness(OSk) and orness(F ) ≤
orness(OSk).

Example 2.1. The product F (x) =
∏

i xi, defined on [0, 1]n, is 1-intolerant and we have E(F ) =
1/2n.

By duality, we can also introduce k-tolerant functions as follows:

Definition 2.2. Let k ∈ {1, . . . , n}. An aggregation function F : [0, 1]n → [0, 1] is at most k-
tolerant if F ≥ OSn−k+1. It is k-tolerant if, in addition, F � OSn−k+2, where OSn+1 := 1 by
convention.

It is immediate to see that when a function F : [0, 1]n → [0, 1] is k-intolerant, its dual F ∗ :
[0, 1]n → [0, 1], defined by

F ∗(x1, . . . , xn) := 1− F (1− x1, . . . , 1− xn) (x ∈ [0, 1]n) (5)

is k-tolerant and vice versa.
In the next section we investigate the particular case where F is the Choquet integral and we

define the concepts of k-intolerant and k-tolerant capacities.

3 Case of Choquet integrals and capacities

The use of the Choquet integral has been proposed by many authors as an adequate substitute
to the weighted arithmetic mean to aggregate interacting criteria; see e.g. [2, 6]. In the weighted
arithmetic mean model, each criterion is given a weight representing the importance of this crite-
rion in the decision. In the Choquet integral model, where criteria can be dependent, a capacity
is used to define a weight on each combination of criteria, thus making it possible to model the
interaction existing among criteria.

Let us first recall the formal definitions of these concepts. Throughout, we will use the notation
N := {1, . . . , n} for the set of criteria.

Definition 3.1. A capacity on N is a set function v : 2N → [0, 1], that is nondecreasing with
respect to set inclusion and such that v(∅) = 0 and v(N) = 1.

Definition 3.2. Let v be a capacity on N . The Choquet integral of x : N → R with respect to v
is defined by

Cv(x) :=
n∑

i=1

x(i) [v(A(i))− v(A(i+1))], (6)

where (·) indicates a permutation on N such that x(1) ≤ . . . ≤ x(n). Furthermore A(i) :=
{(i), . . . , (n)} and A(n+1) := ∅.

In this section we apply the ideas of k-intolerance and k-tolerance (cf. Definitions 2.1 and 2.2)
to the Choquet integral. Since this integral is internal, it can be seen as a function from [0, 1]n to
[0, 1].

Let us denote by FN the set of all capacities on N . The following proposition, inspired from
[7, §4], gives equivalent conditions for a Choquet integral to be at most k-intolerant.
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Proposition 3.1. Let k ∈ {1, . . . , n} and v ∈ FN . Then the following assertions are equivalent:
i) Cv(x) ≤ x(k) ∀x ∈ [0, 1]n,

ii) v(T ) = 0 ∀T ⊆ N such that |T | ≤ n− k,
iii) Cv(x) = 0 ∀x ∈ [0, 1]n such that x(k) = 0,
iv) Cv(x) is independent of x(k+1), . . . , x(n),
v) ∃λ ∈ [0, 1) such that ∀x ∈ [0, 1]n we have x(k) ≤ λ ⇒ Cv(x) ≤ λ,

As we can see, some assertions of Proposition 3.1 are natural and can be interpreted easily.
Some others are more surprising and show that the Choquet integral may have an unexpected
behavior.

First, assertion (ii) enables us to define k-intolerant capacities as follows:

Definition 3.3. Let k ∈ {1, . . . , n}. A capacity v ∈ FN is k-intolerant if v(T ) = 0 for all T ⊆ N
such that |T | ≤ n− k and there is T ∗ ⊆ N , with |T ∗| = n− k + 1, such that v(T ∗) 6= 0.

Assertion (iii) says that the output value of the Choquet integral is zero whenever at least k
input values are zeros. This is actually a straightforward consequence of k-intolerance.

Assertion (iv) is more surprising. It says that the output value of the Choquet integral does
not take into account the values of x(k+1), . . . , x(n). Back to Example 1.1, only the two lowest
scores are taken into account to provide a global evaluation, regardless of the other scores.

Assertion (v) is also of interest. By imposing that Cv(x) ≤ λ whenever x(k) ≤ λ for a given
threshold λ ∈ [0, 1), we necessarily force Cv to be at most k-intolerant. For instance, consider the
problem of evaluating students with respect to different courses and suppose that it is decided
that if the lowest k marks obtained by a student are less than 18/20 then his/her global mark
must be less than 18/20. In this case, the Choquet integral utilized is at most k-intolerant.

Proposition 3.1 can be easily rewritten for k-tolerance by considering the dual C∗v of the Cho-
quet integral Cv as defined in Eq. (5). On this issue, Grabisch et al. [4, §4] showed that the dual
C∗v of Cv is the Choquet integral Cv∗ defined from the dual capacity v∗, which is constructed from
v by

v(T ) = 1− v(N \ T ) (T ⊆ N).

We then have
Cv ≥ OSn−k+1 ⇔ Cv∗ ≤ OSk.

Proposition 3.2. Let k ∈ {1, . . . , n} and v ∈ FN . Then the following assertions are equivalent:
i) Cv(x) ≥ x(n−k+1) ∀x ∈ [0, 1]n,

ii) v(T ) = 1 ∀T ⊆ N such that |T | ≥ k,
iii) Cv(x) = 1 ∀x ∈ [0, 1]n such that x(n−k+1) = 1,
iv) Cv(x) is independent of x(1), . . . , x(n−k),
v) ∃λ ∈ (0, 1] such that ∀x ∈ [0, 1]n we have x(n−k+1) ≥ λ ⇒ Cv(x) ≥ λ,

Here again, some assertions are of interest. First, assertion (ii) enables us to define k-tolerant
capacities as follows:

Definition 3.4. Let k ∈ {1, . . . , n}. A capacity v ∈ FN is k-tolerant if v(T ) = 1 for all T ⊆ N
such that |T | ≥ k and there is T ∗ ⊆ N , with |T ∗| = k − 1, such that v(T ∗) 6= 1.

Assertion (iii) says that the output value of the Choquet integral is one whenever at least k
input values are ones.

Assertion (iv) says that the output value of the Choquet integral does not take into account
the values of x(1), . . . , x(n−k). As an application, consider students who are evaluated according
to n homework assignments and assume that the evaluation procedure states that the two lowest
homework scores of each student are dropped, which implies that each student can miss two
homework assignments without affecting his/her final grade. If a n-variable Choquet integral is
used to aggregate the homework scores, it should not take x(1) and x(2) into consideration and
hence it is at most (n− 2)-tolerant.
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4 Conclusion

In this paper, which can be considered as the sequel of [7], we have proposed the concepts of
k-intolerant and k-tolerant Choquet integrals and capacities. Besides the obvious computational
advantage of these concepts (comparable to that of k-additive and p-symmetric capacities), they
can be easily interpreted in practical decision problems where the decision makers must be intoler-
ant or tolerant. In an extended version of this paper, we also introduce axiomatically intolerance
and tolerance indices which measure the degree to which the Choquet integral is k-intolerant and
k-tolerant. These indices, when varying k from 1 to n−1, make it possible to identify and measure
the intolerant or tolerant character of the decision maker.
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