Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
The Chisini mean revisited
MARICHAL, Jean-Luc
2009 • In González, Manuel; Mayor, Gaspar; Suner, Jaumeet al. (Eds.) Proc. 5th Int. Summer School on Aggregation Operators and their Applications (AGOP 2009)
[en] We investigate the $n$-variable real functions $\G$ that are solutions of the functional equation $\F(\bfx)=\F(\G(\bfx),\ldots,\G(\bfx))$, where $\F$ is a given function of $n$ real variables. We provide necessary and sufficient conditions on $\F$ for the existence and uniqueness of solutions. When $\F$ is nondecreasing in each variable, we show in a constructive way that if a solution exists then a nondecreasing and idempotent solution always exists. Such solutions, called Chisini means, are then thoroughly investigated.
Disciplines :
Mathématiques
Identifiants :
UNILU:UL-CONFERENCE-2010-404
Auteur, co-auteur :
MARICHAL, Jean-Luc ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
The Chisini mean revisited
Date de publication/diffusion :
2009
Nom de la manifestation :
5th Int. Summer School on Aggregation Operators and their Applications (AGOP 2009)
Organisateur de la manifestation :
Gaspar Mayor
Lieu de la manifestation :
Palma de Mallorca, Espagne
Date de la manifestation :
from 06-07-2009 to 10-07-2009
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proc. 5th Int. Summer School on Aggregation Operators and their Applications (AGOP 2009)
Editeur scientifique :
González, Manuel
Mayor, Gaspar
Suner, Jaume
Torrens, Joan
Maison d'édition :
Edicions UIB. Cas Jai. Campus Universitari, Universitat de Illes Balears, Espagne