[en] (1) Background: Navigating surfaces during walking can alter gait patterns. This study aims to develop tools for automatic walking condition classification using inertial measurement unit (IMU) and foot pressure sensors. We compared sensor modalities (IMUs on lower-limbs, IMUs on feet, IMUs on the pelvis, pressure insoles, and IMUs on the feet or pelvis combined with pressure insoles) and evaluated whether gait cycle segmentation improves performance compared to a sliding window. (2) Methods: Twenty participants performed flat, stairs up, stairs down, slope up, and slope down walking trials while fitted with IMUs and pressure insoles. Machine learning (ML; Extreme Gradient Boosting) and deep learning (DL; Convolutional Neural Network + Long Short-Term Memory) models were trained to classify these conditions. (3) Results: Overall, a DL model using lower-limb IMUs processed with gait segmentation performed the best (F1=0.89). Models trained with IMUs outperformed those trained on pressure insoles (p<0.01). Combining sensor modalities and gait segmentation improved performance for ML models (p<0.01). The best minimal model was a DL model trained on IMU pelvis + pressure insole data using sliding window segmentation (F1=0.83). (4) Conclusions: IMUs provide the most discriminative features for automatic walking condition classification. Combining sensor modalities may be helpful for some model architectures. DL models perform well without gait segmentation, making them independent of gait event identification algorithms.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Jlassi, Oussama ; Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
Emmerzaal, Jill; Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
VINCO, Gabriella ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Health and Behaviour
Garcia, Frederic; Department of Precision Health, Luxembourg Institute of Health, 1445 Luxembourg, Luxembourg
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
GRIMM, Bernd ; University of Luxembourg ; Department of Precision Health, Luxembourg Institute of Health, 1445 Luxembourg, Luxembourg
Dixon, Philippe C. ; Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada
External co-authors :
yes
Language :
English
Title :
Outdoor Walking Classification Based on Inertial Measurement Unit and Foot Pressure Sensor Data
Blair S. Lake M.J. Ding R. Sterzing T. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds Hum. Mov. Sci. 2018 59 112 120 10.1016/j.humov.2018.04.003 29653340
Allet L. Armand S. de Bie R.A. Pataky Z. Aminian K. Herrmann F.R. de Bruin E.D. Gait alterations of diabetic patients while walking on different surfaces Gait Posture 2009 29 488 493 10.1016/j.gaitpost.2008.11.012 19138520
Ippersiel P. Shah V. Dixon P.C. The impact of outdoor walking surfaces on lower-limb coordination and variability during gait in healthy adults Gait Posture 2022 91 7 13 10.1016/j.gaitpost.2021.09.176 34628219
Dixon P. Schütte K. Vanwanseele B. Jacobs J. Dennerlein J. Schiffman J. Gait adaptations of older adults on an uneven brick surface can be predicted by age-related physiological changes in strength Gait Posture 2018 61 257 262 10.1016/j.gaitpost.2018.01.027
Vieira M.F. Rodrigues F.B. de Sá E Souza G.S. Magnani R.M. Lehnen G.C. Campos N.G. Andrade A.O. Gait stability, variability and complexity on inclined surfaces J. Biomech. 2017 54 73 79 10.1016/j.jbiomech.2017.01.045
Menz H.B. Lord S.R. Fitzpatrick R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces Gait Posture 2003 18 35 46 10.1016/S0966-6362(02)00159-5
Emmerzaal J. Ippersiel P. Dixon P.C. Non-Linear Gait Dynamics Are Affected by Commonly Occurring Outdoor Surfaces and Sex in Healthy Adults Sensors 2025 25 4191 10.3390/s25134191
Menant J.C. Steele J.R. Menz H.B. Munro B.J. Lord S.R. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people Gait Posture 2009 29 392 397 10.1016/j.gaitpost.2008.10.057
Li W.J. Keegan T.H.M. Sternfeld B. Sidney S. Quesenberry C.P. Kelsey J.L. Outdoor falls among middle-aged and older adults: A neglected public health problem Am. J. Public Health 2006 96 1192 1200 10.2105/AJPH.2005.083055
Shah V. Flood M. Grimm B. Dixon P. Generalizability of deep learning models for predicting outdoor irregular walking surfaces J. Biomech. 2022 139 111 159 10.1016/j.jbiomech.2022.111159
Chauhan P. Singh A.K. Raghuwanshi N.K. Classifying walking pattern on different surfaces by optimising features extracted through IMU sensor data using SSA optimisation J. Braz. Soc. Mech. Sci. Eng. 2025 47 1 17 10.1007/s40430-024-05318-7
Yıldız A. Towards environment-aware fall risk assessment: Classifying walking surface conditions using IMU-based gait data and deep learning Brain Sci. 2023 13 1428 10.3390/brainsci13101428 37891797
Hu B. Li S. Chen Y. Kavi R. Coppola S. Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world Appl. Ergon. 2021 96 103414 10.1016/j.apergo.2021.103414 34087702
Worsey M.T. Espinosa H.G. Shepherd J.B. Thiel D.V. Automatic classification of running surfaces using an ankle-worn inertial sensor Sports Eng. 2021 24 22 10.1007/s12283-021-00359-w
Camargo J. Flanagan W. Csomay-Shanklin N. Kanwar B. Young A. A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors IEEE Trans. Biomed. Eng. 2021 68 1569 1578 10.1109/TBME.2021.3065809
Kim P. Lee J. Shin C.S. Classification of walking environments using deep learning approach based on surface EMG sensors only Sensors 2021 21 4204 10.3390/s21124204
Shin D. Lee S. Hwang S. Locomotion mode recognition algorithm based on Gaussian mixture model using IMU sensors Sensors 2021 21 2785 10.3390/s21082785
Seo K.J. Lee J. Cho J.E. Kim H. Kim J.H. Gait Environment Recognition Using Biomechanical and Physiological Signals with Feed-Forward Neural Network: A Pilot Study Sensors 2025 25 4302 10.3390/s25144302
Kapoor S. Narayanan A. Leakage and the reproducibility crisis in machine-learning-based science Patterns 2023 4 100804
Saeb S. Lonini L. Jayaraman A. Mohr D. Kording K. The need to approximate the use-case in clinical machine learning GigaScience 2017 6 gix019 10.1093/gigascience/gix019
McQuire J. Watson P. Wright N. Hiden H. Catt M. Uneven and irregular surface condition prediction from human walking data using both centralized and decentralized machine learning approaches Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Houston, TX, USA 9–12 December 2021 1449 1452
Ng H.R. Sossa I. Nam Y. Youn J.H. Machine learning approach for automated detection of irregular walking surfaces for walkability assessment with wearable sensor Sensors 2022 23 193 10.3390/s23010193
Warmerdam E. Burger L.M. Mergen D.F. Orth M. Pohlemann T. Ganse B. The walking surface influences vertical ground reaction force and centre of pressure data obtained with pressure-sensing insoles Front. Digit. Health 2024 6 1476335 10.3389/fdgth.2024.1476335 39583997
Losing V. Hasenjäger M. A Multi-Modal Gait Database of Natural Everyday-Walk in an Urban Environment Sci. Data 2022 9 473 10.1038/s41597-022-01580-3 35922448
Schepers M. Giuberti M. Bellusci G. Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing XSENS TECHNOLOGIES B.V. Enschede, The Netherlands 2018 10.13140/RG.2.2.22099.07205
IEE Smart Sensing Solutions Smart Health 2018 Available online: https://iee-sensing.com/health-tech/ (accessed on 8 April 2025)
Wu G. Siegler S. Allard P. Kirtley C. Leardini A. Rosenbaum D. Whittle M. D D’Lima D. Cristofolini L. Witte H. et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine J. Biomech. 2002 35 543 548 10.1016/S0021-9290(01)00222-6 11934426
Leng Z. Iyer A. Plötz T. Scaling Human Activity Recognition: A Comparative Evaluation of Synthetic Data Generation and Augmentation Techniques arXiv 2025 10.48550/arXiv.2506.07612 2506.07612
Banos O. Galvez J.M. Damas M. Pomares H. Rojas I. Window Size Impact in Human Activity Recognition Sensors 2014 14 6474 6499 10.3390/s140406474
The Pandas Development Team. pandas-dev/pandas: Pandas 2020 Available online: https://zenodo.org/records/17992932 (accessed on 8 April 2025)
Harris C.R. Millman K.J. van der Walt S.J. Gommers R. Virtanen P. Cournapeau D. Wieser E. Taylor J. Berg S. Smith N.J. et al. Array programming with NumPy Nature 2020 585 357 362 10.1038/s41586-020-2649-2
Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. et al. Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 2011 12 2825 2830
Christ M. Braun N. Neuffer J. Kempa-Liehr A.W. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh—A Python package) Neurocomputing 2018 307 72 77 10.1016/j.neucom.2018.03.067
Felice F. Ley C. Bordas S.P. Groll A. Boosting any learning algorithm with Statistically Enhanced Learning Sci. Rep. 2025 15 1605 10.1038/s41598-024-84702-8
Saeys Y. Inza I. Larrañaga P. A review of feature selection techniques in bioinformatics Bioinformatics 2007 23 2507 2517 10.1093/bioinformatics/btm344
Chen T. Guestrin C. XGBoost: A Scalable Tree Boosting System Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York, NY, USA 13–17 August 2016 785 794 10.1145/2939672.2939785
Burges E.T. Oraibi Z.A. Wali A. Gait Recognition Using Hybrid LSTM-CNN Deep Neural Networks J. Image Graph. 2024 12 168 175 10.18178/joig.12.2.168-175
Urvashi Kumar D. Gupta T. Fusion of CNN and LSTM Models for Enhanced Gait Swing Phase Identification Proceedings of the 2024 Global Conference on Communications and Information Technologies (GCCIT) Bangalore, India 25–26 October 2024 1 4 10.1109/GCCIT63234.2024.10862239
Lv H. Hao B. Convolutional neural network and long short-term memory hybrid model-based gait prediction for spacesuit intelligent assistive device in low gravity environment Acta Astronaut. 2025 236 199 212 10.1016/j.actaastro.2025.06.049
Dumphart B. Slijepcevic D. Unglaube F. Kranzl A. Baca A. Horsak B. The effect of inaccurate initial contact events on kinematics in healthy and pathological gait Gait Posture 2026 123 110012 10.1016/j.gaitpost.2025.110012 41110193
Blades S. Marriott H. Hundza S. Honert E.C. Stellingwerff T. Klimstra M. Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds Sensors 2023 23 2736 10.3390/s23052736
Kobayashi S. Katsurada R. Hasegawa T. Estimation of sidewalk surface type with a smartphone Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City Shanghai, China 20–23 December 2019 497 502
Luo Y. Coppola S.M. Dixon P.C. Li S. Dennerlein J.T. Hu B. A database of human gait performance on irregular and uneven surfaces collected by wearable sensors Sci. Data 2020 7 1 9 10.1038/s41597-020-0563-y
Chen W.H. Lee Y.S. Yang C.J. Chang S.Y. Shih Y. Sui J.D. Shiang T.Y. Determining motions with an IMU during level walking and slope and stair walking J. Sports Sci. 2019 38 62 69 10.1080/02640414.2019.1680083
Mirjalili S. Gandomi A.H. Mirjalili S.Z. Saremi S. Faris H. Mirjalili S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems Adv. Eng. Softw. 2017 114 163 191 10.1016/j.advengsoft.2017.07.002
De Brabandere A. Op De Beéck T. Hendrickx K. Meert W. Davis J. TSFuse: Automated feature construction for multiple time series data Mach. Learn. 2024 113 5001 5056
Hashmi M.Z.U.H. Riaz Q. Hussain M. Shahzad M. What lies beneath one’s feet? terrain classification using inertial data of human walk Appl. Sci. 2019 9 3099 10.3390/app9153099
Bunker M.T. Sher A. Akpokodje V. Villagra F. Parthaláin N.M. Akanyeti O. Towards fuzzy context-aware automatic gait assessments in free-living environments UK Workshop on Computational Intelligence Springer Cham, Switzerland 2021 463 474
Sher A. Bunker M.T. Akanyeti O. Towards personalized environment-aware outdoor gait analysis using a smartphone Expert Syst. 2023 40 e13130 10.1111/exsy.13130
Kyeong S. Shin W. Yang M. Heo U. Feng J.r. Kim J. Recognition of walking environments and gait period by surface electromyography Front. Inf. Technol. Electron. Eng. 2019 20 342 352 10.1631/FITEE.1800601