artificial intelligence; digital twin; musculoskeletal; orthopaedic surgery; personalised medicine; rehabilitation; Humans; Wearable Electronic Devices; Artificial Intelligence; Machine Learning; Musculoskeletal Diseases; Computer Simulation; Surgery; Orthopedics and Sports Medicine
Abstract :
[en] Digital twin (DT) systems, which involve creating virtual replicas of physical objects or systems, have the potential to transform healthcare by offering personalised and predictive models that grant deeper insight into a patient's condition. This review explores current concepts in DT systems for musculoskeletal (MSK) applications through an overview of the key components, technologies, clinical uses, challenges, and future directions that define this rapidly growing field. DT systems leverage computational models such as multibody dynamics and finite element analysis to simulate the mechanical behaviour of MSK structures, while integration with wearable technologies allows real-time monitoring and feedback, facilitating preventive measures, and adaptive care strategies. Early applications of DT systems to MSK include optimising the monitoring of exercise and rehabilitation, analysing joint mechanics for personalised surgical techniques, and predicting post-operative outcomes. While still under development, these advancements promise to revolutionise MSK care by improving surgical planning, reducing complications, and personalising patient rehabilitation strategies. Integrating advanced machine learning algorithms can enhance the predictive abilities of DTs and provide a better understanding of disease processes through explainable artificial intelligence (AI). Despite their potential, DT systems face significant challenges. These include integrating multi-modal data, modelling ageing and damage, efficiently using computational resources and developing clinically accurate and impactful models. Addressing these challenges will require multidisciplinary collaboration. Furthermore, guaranteeing patient privacy and protection against bias is extremely important, as is navigating regulatory requirements for clinical adoption. DT systems present a significant opportunity to improve patient care, made possible by recent technological advancements in several fields, including wearable sensors, computational modelling of biological structures, and AI. As these technologies continue to mature and their integration is streamlined, DT systems may fast-track medical innovation, ushering in a new era of rapid improvement of treatment outcomes and broadening the scope of preventive medicine. Level of Evidence: Level V.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Diniz, Pedro ; Department of Orthopaedic Surgery, Centre Hospitalier de Luxembourg - Clinique d'Eich, Luxembourg, Luxembourg ; Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS), Luxembourg, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg ; Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
GRIMM, Bernd ; University of Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
Garcia, Frederic; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
Fayad, Jennifer; Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS), Luxembourg, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Mouton, Caroline; Department of Orthopaedic Surgery, Centre Hospitalier de Luxembourg - Clinique d'Eich, Luxembourg, Luxembourg ; Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS), Luxembourg, Luxembourg
Oeding, Jacob F; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Hirschmann, Michael T; Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland, Bruderholz, Switzerland
Samuelsson, Kristian; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Seil, Romain; Department of Orthopaedic Surgery, Centre Hospitalier de Luxembourg - Clinique d'Eich, Luxembourg, Luxembourg ; Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS), Luxembourg, Luxembourg ; Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
External co-authors :
yes
Language :
English
Title :
Digital twin systems for musculoskeletal applications: A current concepts review.
The authors thank Camille Wojtylka and Arik Musagara from the LIROMS Human Motion Lab, Luxembourg, for their assistance in providing the running analysis images.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning Preprint posted online. 2016.
Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf Fusion. 2021;76:243–297.
Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, et al. A digital twin for simulating the vertebroplasty procedure and its impact on mechanical stability of vertebra in cancer patients. Int J Numer Method Biomed Eng. 2022;38(6):e3600.
Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, et al. Toward an artificial intelligence-assisted framework for reconstructing the digital twin of vertebra and predicting its fracture response. Int J Numer Method Biomed Eng. 2022;38(6):e3601.
Ahn S, Kim J, Baek S, Kim C, Jang H, Lee S. Toward digital twin development for implant placement planning using a parametric reduced-order model. Bioengineering. 2024;11(1):84.
Aldieri A, Curreli C, Szyszko JA, La Mattina AA, Viceconti M. Credibility assessment of computational models according to ASME V&V40: application to the bologna biomechanical computed tomography solution. Comput Methods Programs Biomed. 2023;240:107727.
Amofa S, Xia Q, Xia H, Obiri IA, Adjei-Arthur B, Yang J, et al. Blockchain-secure patient Digital Twin in healthcare using smart contracts. PLoS One. 2024;19(2):e0286120.
Amorim P, Moraes T, Silva J, Pedrini H. InVesalius: an interactive rendering framework for health care support. In: Bebis G, Boyle R, Parvin B, Koracin D, Pavlidis I, Feris R, McGraw T, Elendt M, Kopper R, Ragan E, Ye Z, Weber G, editors. Advances in visual computing. ISVC 2015. Lecture notes in computer science. 9474. Cham: Springer; 2015. p. 45–54.
Antunes M, Quental C, Folgado J, Ângelo AC, de Campos Azevedo C. Influence of the rotator cuff tear pattern in shoulder stability after arthroscopic superior capsule reconstruction: a computational analysis. J ISAKOS. 2024;9(3):296–301.
Armeni P, Polat I, De Rossi LM, Diaferia L, Meregalli S, Gatti A. Digital twins in healthcare: is it the beginning of a new era of evidence-based medicine? A critical review. J Pers Med. 2022;12(8):1255.
Aubert K, Germaneau A, Rochette M, Ye W, Severyns M, Billot M, et al. Development of digital twins to optimize trauma surgery and postoperative management. A case study focusing on tibial plateau fracture. Front Bioeng Biotechnol. 2021;9:722275.
Babarenda Gamage TP, Elsayed A, Lin C, Wu A, Feng Y, Yu J, et al. 2023 45th annual international conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia; 2023, p. 1–4.
Baillargeon B, Rebelo N, Fox DD, Taylor RL, Kuhl E. The living heart project: a robust and integrative simulator for human heart function. Eur J Mech A Solids. 2014;48:38–47.
Barricelli BR, Casiraghi E, Fogli D. A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access. 2019;7:167653–167671.
Baylous K, Helbock R, Kovarovic B, Anam S, Slepian M, Bluestein D. In silico fatigue optimization of TAVR stent designs with physiological motion in a beating heart model. Comput Methods Programs Biomed. 2024;243:107886.
Bittner M, Yang W-T, Zhang X, Seth A, van Gemert J, van der Helm FCT. Towards single camera human 3D-kinematics. Sensors. 2023;23(1):341.
Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital twins to personalize medicine. Genome Med. 2019;12(1):4.
Braun BJ, Histing T, Menger MM, Herath SC, Mueller-Franzes GA, Grimm B, et al. Wearable activity data can predict functional recovery after musculoskeletal injury: feasibility of a machine learning approach. Injury. 2024;55(2):111254.
Braun M, Krutzinna J. Digital twins and the ethics of health decision-making concerning children. Patterns. 2022;3(4):100469.
Calcaterra V, Pagani V, Zuccotti G. Digital twin: a future health challenge in prevention, early diagnosis and personalisation of medical care in paediatrics. Int J Environ Res Public Health. 2023;20(3):2181.
Carbonaro A, Marfoglia A, Nardini F, Mellone S. CONNECTED: leveraging digital twins and personal knowledge graphs in healthcare digitalization. Front Digit Health. 2023;5:1322428.
Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. MONAI: an open-source framework for deep learning in healthcare. arXiv. Preprint posted online. 2022.
Cellina M, Cè M, Alì M, Irmici G, Ibba S, Caloro E, et al. Digital twins: the new frontier for personalized medicine? Appl Sci. 2023;13(13):7940.
Chokhandre S, Schwartz A, Klonowski E, Landis B, Erdemir A. Open knee(s): a free and open source library of specimen-specific models and related digital assets for finite element analysis of the knee joint. Ann Biomed Eng. 2023;51(1):10–23.
Chumnanvej S, Chumnanvej S, Tripathi S. Assessing the benefits of digital twins in neurosurgery: a systematic review. Neurosurg Rev. 2024;47(1):52.
Cosmas A, Cruz G, Cubela S, Huntington M, Rahimi S, Tiwari S. Digital twins and generative AI: a powerful pairing (2024). Available from: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/digital-twins-and-generative-ai-a-powerful-pairing. Accessed 13 Nov 2024.
Courcelles E, Horner M, Afshari P, Kulesza A, Curreli C, Vaghi C, et al. Model credibility. In: Viceconti M, Emili L, editors. Toward good simulation practice. Synthesis lectures on biomedical engineering. Cham: Springer; 2024. p. 43–66.
Cronrath C, Ekström L, Lennartson B. Formal properties of the digital twin – implications for learning, optimization, and control. 2020 IEEE 16th international Conference on Automation Science and Engineering (CASE), Hong Kong, China; 2020. p. 679–684.
Dagneaux L, Canovas F, Jourdan F. Finite element analysis in the optimization of posterior-stabilized total knee arthroplasty. Orthop Traumatol Sur Res. 2024;110(1, Suppl):103765.
Dassault Systèmes. The Living Heart Project (2024). Available from: https://www.3ds.com/products-services/simulia/solutions/life-sciences-healthcare/the-living-heart-project/. Accessed 13 Nov 2024.
De Benedictis A, Mazzocca N, Somma A, Strigaro C. Digital twins in healthcare: an architectural proposal and its application in a social distancing case study. IEEE J Biomed Health Inform. 2023;27(10):5143–5154.
Dean MC, Oeding JF, Diniz P, Seil R, Samuelsson K. Leveraging digital twins for improved orthopaedic evaluation and treatment. J Exp Orthop. 2024;11(4):e70084.
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–1950.
Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc. 2011;122:48–58.
Dharia MA, Snyder S, Bischoff JE. Computational model validation of contact mechanics in total ankle arthroplasty. J Orthop Res. 2020;38(5):1063–1069.
Dihan MS, Akash AI, Tasneem Z, Das P, Das SK, Islam MR, et al. Digital twin: data exploration, architecture, implementation and future. Heliyon. 2024;10(5):e26503.
Diniz P, Ferreira AS, Figueiredo L, Batista JP, Abdelatif N, Pereira H, et al. Early analysis shows that endoscopic flexor hallucis longus transfer has a promising cost-effectiveness profile in the treatment of acute Achilles tendon ruptures. Knee Surg Sports Traumatol Arthrosc. 2023;31(5):2001–2014.
Diniz P, Quental C, Pereira H, Lopes R, Kerkhoffs GMMJ, Ferreira FC, et al. Progression of partial to complete ruptures of the Achilles tendon during rehabilitation: a study using a finite element model. J Orthop Res. 2024;42(8):1670–1681.
Diniz P, Quental C, Violindo P, Veiga GomesGomes, J, Pereira H, Kerkhoffs GMMJ, et al. Design and validation of a finite element model of the aponeurotic and free Achilles tendon. J Orthop Res. 2022;41(3):534–545.
Dreger M, Eckhardt H, Felgner S, Ermann H, Lantzsch H, Rombey T, et al. Implementation of innovative medical technologies in German inpatient care: patterns of utilization and evidence development. Implement Sci. 2021;16(1):94.
Drummond D, Coulet A. Technical, ethical, legal, and societal challenges with digital twin systems for the management of chronic diseases in children and young people. J Med Internet Res. 2022;24(10):e39698.
European Medicines Agency. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation (2024). Available from: https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation-scientific-guideline. Accessed 13 Nov 2024.
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30(9):1323–1341.
Food and Drug Administration. Assessing the credibility of computational modeling and simulation in medical device submissions (2023). Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/assessing-credibility-computational-modeling-and-simulation-medical-device-submissions. Accessed 13 Nov 2024.
Friesen KB, Saper MG, Oliver GD. Biomechanics related to increased softball pitcher shoulder stress: implications for injury prevention. Am J Sports Med. 2022;50(1):216–223.
Galbusera F, Cina A, Panico M, Albano D, Messina C. Image-based biomechanical models of the musculoskeletal system. Euro Radiol Exp. 2020;4(1):49.
Gao J, Li P, Chen Z, Zhang J. A survey on deep learning for multimodal data fusion. Neural Comput. 2020;32(5):829–864.
Ghosh R, Chanda S, Chakraborty D. Application of finite element analysis to tissue differentiation and bone remodelling approaches and their use in design optimization of orthopaedic implants: a review. Int J Numer Method Biomed Eng. 2022;38(10):e3637.
Giuffrè M, Shung DL. Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. npj Digit Med. 2023;6(1):186.
Grieves MW. Digital twins: past, present, and future. In: Crespi N, Drobot AT, Minerva R, editors. The digital twin. Cham: Springer International Publishing; 2023. p. 97–121.
Guo Y, Liu Y, Sun W, Yu S, Han X-J, Qu X-H, et al. Digital twin-driven dynamic monitoring system of the upper limb force. Comput Methods Biomech Biomed Engin. 2023;27(12):1691–1703.
Habersack A, Fischerauer SF, Kraus T, Holzer H-P, Svehlik M. Kinematic and kinetic gait parameters can distinguish between idiopathic and neurologic toe-walking. Int J Environ Res Public Health. 2022;19(2):804.
Hathaliya JJ, Tanwar S. An exhaustive survey on security and privacy issues in Healthcare 4.0. Comput Commun. 2020;153:311–335.
He X, Qiu Y, Lai X, Li Z, Shu L, Sun W, et al. Towards a shape-performance integrated digital twin for lumbar spine analysis. Digital Twin. 2021;1:8.
Hernigou P, Olejnik R, Safar A, Martinov S, Hernigou J, Ferre B. Digital twins, artificial intelligence, and machine learning technology to identify a real personalized motion axis of the tibiotalar joint for robotics in total ankle arthroplasty. Int Orthop. 2021;45(9):2209–2217.
Hernigou P, Safar A, Hernigou J, Ferre B. Subtalar axis determined by combining digital twins and artificial intelligence: influence of the orientation of this axis for hindfoot compensation of varus and valgus knees. Int Orthop. 2022;46(5):999–1007.
Hogeweg P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol. 2011;7(3):e1002021.
Horak T, Strelec P, Kebisek M, Tanuska P, Vaclavova A. Data integration from heterogeneous control levels for the purposes of analysis within industry 4.0 concept. Sensors. 2022;22(24):9860.
Hu T, Kühn J, Haddadin S. Forward and inverse dynamics modeling of human shoulder-arm musculoskeletal system with scapulothoracic constraint. Comput Methods Biomech Biomed Engin. 2020;23(11):785–803.
Hu W, Zhang T, Deng X, Liu Z, Tan J. Digital twin: a state-of-the-art review of its enabling technologies, applications and challenges. J Intell Manuf. 2021;2(1):1–34.
Huang P, Kim K, Schermer M. Ethical issues of digital twins for personalized health care service: preliminary mapping study. J Med Internet Res. 2022;24(1):e33081.
Huerta EA, Blaiszik B, Brinson LC, Bouchard KE, Diaz D, Doglioni C, et al. FAIR for AI: an interdisciplinary and international community building perspective. Sci Data. 2023;10(1):487.
Jia J, Li Y. Deep learning for structural health monitoring: data, algorithms, applications, challenges, and trends. Sensors. 2023;23(21):8824.
Johnson KB, Wei W-Q, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86–93.
Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to precision public health. J Pers Med. 2021;11(8):745.
Kameo Y, Miya Y, Hayashi M, Nakashima T, Adachi T. In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Sci Adv. 2020;6(10):eaax0938.
Katsoulakis E, Wang Q, Wu H, Shahriyari L, Fletcher R, Liu J, et al. Digital twins for health: a scoping review. npj Digit Med. 2024;7(1):77.
Kovacs E, Mori K. Digital twin architecture—an introduction. In: Crespi N, Drobot AT, Minerva R, editors. Digit twin. Cham: Springer International Publishing; 2023. p. 125–151.
Kulseng CPS, Nainamalai V, Grøvik E, Geitung J-T, Årøen A, Gjesdal K-I. Automatic segmentation of human knee anatomy by a convolutional neural network applying a 3D MRI protocol. BMC Musculoskelet Disord. 2023;24(1):41.
Laubenbacher R, Adler F, An G, Castiglione F, Eubank S, Fonseca LL, et al. Toward mechanistic medical digital twins: some use cases in immunology. Front Digit Health. 2024;7(6):1349595.
Liu Y, Zhang L, Yang Y, Zhou L, Ren L, Wang F, et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access. 2019;7:49088–49101.
Longo UG, De Salvatore S, Carnevale A, Tecce SM, Bandini B, Lalli A, et al. Optical motion capture systems for 3D kinematic analysis in patients with shoulder disorders. Int J Environ Res Public Health. 2022;19(19):12033.
Lonsdale H, Gray GM, Ahumada LM, Yates HM, Varughese A, Rehman MA. The perioperative human digital twin. Anesth Analg. 2022;134(4):885–892.
Lv Z. Digital twins in industry 5.0. Research. 2023;6:0071.
Lv Z, Shang W-L, Guizani M. Impact of digital twins and metaverse on cities: history, current situation, and application perspectives. Appl Sci. 2022;12(24):12820.
Maas SA, Ellis BJ, Ateshian GA, Weiss JA. FEBio: finite elements for biomechanics. J Biomech Eng. 2012;134(1):011005.
MarketsandMarkets. Digital twin market size, share, industry report, revenue trends and growth drivers (2024). Available from: https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html?gad_source=1&gclid=CjwKCAiAudG5BhAREiwAWMlSjC-jsg5xaRJbtmk42WZi_Gvk0jX1NcrenD__5XilZNiZtCIpNqBUnRoCVSoQAvD_BwE, Accessed 13 Nov 2024.
Masison J, Beezley J, Mei Y, Ribeiro H, Knapp AC, Sordo Vieira L, et al. A modular computational framework for medical digital twins. Proc Natl Acad Sci U S A. 2021;118(20):e2024287118.
Mathur M, Meador WD, Malinowski M, Jazwiec T, Timek TA, Rausch MK. Texas TriValve 1.0: a reverse-engineered, open model of the human tricuspid valve. Eng Comput. 2022;38(5):3835–3848.
Matthis J. The FreeMoCap Project (2024). Available from: https://freemocap.org. Accessed 29 Jan 2025.
Meijer C, Uh H-W, el Bouhaddani S. Digital twins in healthcare: methodological challenges and opportunities. J Pers Med. 2023;13(10):1522.
Michaud F, Luaces A, Mouzo F, Cuadrado J. Use of patellofemoral digital twins for patellar tracking and treatment prediction: comparison of 3D models and contact detection algorithms. Front Bioeng Biotechnol. 2024;12:1347720.
Mihai S, Yaqoob M, Hung DV, Davis W, Towakel P, Raza M, et al. Digital twins: a survey on enabling technologies, challenges, trends and future prospects. IEEE Commun Surv Tutor. 2022;24(4):2255–2291.
Monteiro HL, Antunes M, Sarmento M, Quental C, Folgado J. Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: a multi-implant finite element study. J Shoulder Elbow Surg. 2024;34:557–566.
Montgomery L, Willing R, Lanting B. Virtual joint motion simulator accurately predicts effects of femoral component malalignment during TKA. Bioengineering. 2023;10(5):503.
Nagaraj D, Khandelwal P, Steyaert S, Gevaert O. Augmenting digital twins with federated learning in medicine. Lancet Digit Health. 2023;5(5):e251–e253.
Nagaraja S, Loughran G, Baumann AP, Kartikeya K, Horner M. Establishing finite element model credibility of a pedicle screw system under compression-bending: an end-to-end example of the ASME V&V 40 standard. Methods. 2024;225:74–88.
NASA. Apollo 13: mission details (2009). Available at: https://www.nasa.gov/missions/apollo/apollo-13-mission-details/. Accessed 13 Nov 2024.
The increasing potential and challenges of digital twins. Nat Comput Sci. 2024;4(3):145–146.
Niederer SA, Sacks MS, Girolami M, Willcox K. Scaling digital twins from the artisanal to the industrial. Nat Comput Sci. 2021;1(5):313–320.
Notermans T, Khayyeri H, Isaksson H. Predicting the effect of reduced load level and cell infiltration on spatio-temporal Achilles tendon healing. J Biomech. 2022;139:110853.
Oettl FC, Pareek A, Winkler PW, Zsidai B, Pruneski JA, Senorski EH, et al. A practical guide to the implementation of AI in orthopaedic research, Part 6: how to evaluate the performance of AI research? J Exp Orthop. 2024;11(3):e12039.
Ouzounis CA. Rise and demise of bioinformatics? Promise and progress. PLoS Comput Biol. 2012;8(4):e1002487.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an Imperative style, high-performance deep learning library arXiv. Preprint posted online. 2019.
Pawłowski M, Wróblewska A, Sysko-Romańczuk S. Effective techniques for multimodal data fusion: a comparative analysis. Sensors. 2023;23(5):2381.
Pearl O, Shin S, Godura A, Bergbreiter S, Halilaj E. Fusion of video and inertial sensing data via dynamic optimization of a biomechanical model. J Biomech. 2023;155:111617.
Peebles AT, Williams B, Queen RM. Bilateral squatting mechanics are associated with landing mechanics in anterior cruciate ligament reconstruction patients. Am J Sports Med. 2021;49(10):2638–2644.
Pérez-García F, Sparks R, Ourselin S. TorchIO: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Comput Methods Programs Biomed. 2021;208:106236.
Pizzolato C, Shim VB, Lloyd DG, Devaprakash D, Obst SJ, Newsham-West R, et al. Targeted achilles tendon training and rehabilitation using personalized and real-time multiscale models of the neuromusculoskeletal system. Front Bioeng Biotechnol. 2020;8:878.
Popa EO, Van Hilten M, Oosterkamp E, Bogaardt M-J. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci Soc Policy. 2021;17(1):6.
Quental C, Folgado J, Fernandes PR, Monteiro J. Subject-specific bone remodelling of the scapula. Comput Methods Biomech Biomed Engin. 2014;17(10):1129–1143.
Quental C, Simões F, Sequeira M, Ambrósio J, Vilas-Boas JP, Nakashima M. A multibody methodological approach to the biomechanics of swimmers including hydrodynamic forces. Multibody Syst Dyn. 2023;57(3):413–426.
Quinn C, Kopp A, Vaughan TJ. A coupled computational framework for bone fracture healing and long-term remodelling: investigating the role of internal fixation on bone fractures. Int J Numer Method Biomed Eng. 2022;38(7):e3609.
Rasheed A, San O, Kvamsdal T. Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access. 2020;8:21980–22012.
Rodrigues DA, Roque M, Mateos-Campos R, Figueiras A, Herdeiro MT, Roque F. Barriers and facilitators of health professionals in adopting digital health-related tools for medication appropriateness: a systematic review. Digit health. 2024;10:20552076231225133.
Romanyk DL, Vafaeian B, Addison O, Adeeb S. The use of finite element analysis in dentistry and orthodontics: critical points for model development and interpreting results. Semin Orthod. 2020;26(3):162–173.
San O. The digital twin revolution. Nat Comput Sci. 2021;1(5):307–308.
Sanchez-Sotelo J, Berhouet J, Chaoui J, Freehill MT, Collin P, Warner J, et al. Validation of mixed-reality surgical navigation for glenoid axis pin placement in shoulder arthroplasty using a cadaveric model. J Shoulder Elbow Surg. 2024;33(5):1177–1184.
Segovia M, Garcia-Alfaro J. Design, modeling and implementation of digital twins. Sensors. 2022;22(14):5396.
Shin D. The effects of explainability and causability on perception, trust, and acceptance: implications for explainable AI. Int J Hum Comput Stud. 2021;146:102551.
Silva ER, Maffulli N, Migliorini F, Santos GM, de Menezes FS, Okubo R. Function, strength, and muscle activation of the shoulder complex in Crossfit practitioners with and without pain: a cross-sectional observational study. J Orthop Surg Res. 2022;17(1):24.
Song K, Hullfish TJ, Scattone Silva R, Silbernagel KG, Baxter JR. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. J Biomech. 2023;157:111751.
Stefanicka-Wojtas D, Kurpas D. Personalised medicine—implementation to the healthcare system in Europe (Focus Group Discussions). J Pers Med. 2023;13(3):380.
Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023;29(1):49–58.
Sun T, Wang J, Suo M, Liu X, Huang H, Zhang J, et al. The digital twin: a potential solution for the personalized diagnosis and treatment of musculoskeletal system diseases. Bioengineering. 2023;10(6):627.
Taborri J, Keogh J, Kos A, Santuz A, Umek A, Urbanczyk C, et al. Sport biomechanics applications using inertial, force, and EMG sensors: a literature overview. Appl Bionics Biomech. 2020;2020(1):2041549.
Tang C, Yi W, Occhipinti E, Dai Y, Gao S, Occhipinti LG. A roadmap for the development of human body digital twins. Nat Rev Electr Eng. 2024;1(3):199–207.
Tao F, Qi Q. Make more digital twins. Nature. 2019;573(7775):490–491.
Teller M. Legal aspects related to digital twin. Philos Trans A Math Phys Eng Sci. 2021;379(2207):20210023.
Vallée A. Digital twin for healthcare systems. F ront Digit Health. 2023;7(5):1253050.
Venkatesh KP, Brito G, Kamel Boulos MN. Health digital twins in life science and health care innovation. Annu Rev Pharmacol Toxicol. 2024;64:159–170.
Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J, Musuamba Tshinanu F. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods. 2021;185:120–127.
Vinuesa R, Brunton SL. Enhancing computational fluid dynamics with machine learning. Nat Comput Sci. 2022;2(6):358–366.
Wakabayashi K, Ogasawara I, Suzuki Y, Nakata K, Nomura T. Causal relationships between immediate pre-impact kinematics and post-impact kinetics during drop landing using a simple three dimensional multibody model. J Biomech. 2021;116:110211.
Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, et al. All around suboptimal health—a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J, 2021;12(4):403–433.
Williams AA, Erhart-Hledik JC, Asay JL, Mahtani GB, Titchenal MR, Lutz AM, et al. Patient-reported outcomes and knee mechanics correlate with patellofemoral deep cartilage UTE-T2* 2 Years after anterior cruciate ligament reconstruction. Am J Sports Med. 2021;49(3):675–683.
Wisneski AD, Wang Y, Cutugno S, Pasta S, Stroh A, Yao J, et al. Left ventricle biomechanics of low-flow, low-gradient aortic stenosis: a patient-specific computational model. Front Physiol. 2022;6(13):848011.
Xie Y-J, Wang S, Gong Q-J, Wang J-X, Sun F-H, Miyamoto A, et al. Effects of electromyography biofeedback for patients after knee surgery: a systematic review and meta-analysis. J Biomech. 2021;120:110386.
Yang Y, Zhao Z, Qi X, Hu Y, Li B, Zhang L. Computational modeling of bone fracture healing under different initial conditions and mechanical load. IEEE Trans Biomed Eng. 2024;71(7):2105–2118.
Yankeelov TE, Hormuth DA, Lima EABF, Lorenzo G, Wu C, Okereke LC, et al. Designing clinical trials for patients who are not average. iScience. 2024;27(1):108589.
Yeadon MR, Pain MTG. Fifty years of performance-related sports biomechanics research. J Biomech. 2023;155:111666.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–1128.
Zsidai B, Hilkert A-S, Kaarre J, Narup E, Senorski EH, Grassi A, et al. A practical guide to the implementation of AI in orthopaedic research—part 1: opportunities in clinical application and overcoming existing challenges. J Exp Orthop. 2023;10(1):117.
Zsidai B, Kaarre J, Narup E, Hamrin Senorski E, Pareek A, Grassi A, et al. A practical guide to the implementation of artificial intelligence in orthopaedic research—part 2: a technical introduction. J Exp Orthop. 2024;11(3):e12025.