[en] Virtual reality (VR) offers new opportunities to promote active behaviors by enhancing engagement and allowing controlled modifications of urban environments. This study investigates whether virtual environments (VEs) can evoke affective responses comparable with real environments (REs), both psychologically and physiologically, by using an immersive VE combined with a walking simulator that replicates walking motion. Forty-nine healthy adults, Luxembourg residents or cross-border commuters, aged 18–65, including students, university staff, and the general public, walked two contrasting street segments, walking-friendly and car-friendly, in both RE and VE in a crossover design. Affective responses were assessed through questions on aesthetics, safety, enjoyment, comfort, relaxation, momentary stress, and real-time physiological data collected using E4 wristband.
Significant differences emerged between the RE and VE across all affective measurements, except for nonspecific skin conductance responses, with the RE consistently eliciting more positive affective responses. Nevertheless, similar affective trends were observed in both the RE and VE across the two segments. Moreover, environmental characteristics significantly influenced affective responses in both the RE and VE, with the walking-friendly segment yielding more positive affective ratings than the car-friendly one. The interactions between environment type (RE vs. VE) and segment type (car-friendly vs. walking-friendly) were not significant for most measurements, indicating that the effect of environment type on affective responses remained consistent across segments. These findings emphasize that VEs can mimic the overall patterns of affective responses observed in REs. This research highlights VR's potential in planning healthier cities, offering insights into its benefits and limitations for future research.
Research center :
LISER - Luxembourg Institute of Socio-Economic Research
H2020 - 956780 - SURREAL - Systems approach of URban enviRonmEnts and heALth HE - 101040492 - FragMent - Geographic environments, daily activities and stress: a study on the space-time fragmentation of exposure patterns
Funders :
European Research Council European Commission Horizon 2020 Framework Programme EU Framework Programme for Research and Innovation Marie Sklodowska-Curie Actions European Union
Funding number :
956780; 101040492
Funding text :
This study has received funding from the European Union's Horizon 2020 research and innovation program-project “SURREAL-Systems approach of urban environments and health" under grant agreement No 956780. CP, RA, and SC were funded by the European Union and supported by ERC grants (ERC-2021-STG, FragMent, 101040492). Views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
Baran, P. K., Tabrizian, P., Zhai, Y., Smith, J. W., & Floyd, M. F. (2018). An exploratory study of perceived safety in a neighborhood park using immersive virtual environments. Urban Forestry & Urban Greening, 35, 72-81. https://doi.org/10.1016/j.ufug.2018.08.009
Bastiaansen, M., Oosterholt, M., Mitas, O., Han, D., & Lub, X. (2022). An emotional roller coaster: Electrophysiological evidence of emotional engagement during a roller-coaster ride with virtual reality add-on. Journal of Hospitality & Tourism Research, 46(1), 29-54. https://doi.org/10.1177/1096348020944436
Benedek, M., & Kaernbach, C. (2010). A continuous measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1), 80-91. https://doi.org/10.1016/j.jneumeth.2010.04.028
Benita, F., & Tuncer, B. (2019). Exploring the effect of urban features and immediate environment on body responses. Urban Forestry & Urban Greening, 43, 126365. https://doi.org/10.1016/j.ufug.2019.126365
Berton, F., Hoyet, L., Olivier, A.-H., Bruneau, J., Le Meur, O., & Pettre, J. (2020). Eye-gaze activity in crowds: Impact of virtual reality and density. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 322-331. https://doi.org/10.1109/VR46266.2020.1581264804299
Bhagavathula, R., Williams, B., Owens, J., & Gibbons, R. (2018). The reality of virtual reality: A comparison of pedestrian behavior in real and virtual environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 2056-2060. https://doi.org/10.1177/1541931218621464
Birenboim, A. (2018). The influence of urban environments on our subjective momentary experiences. Environment and Planning B: Urban Analytics and City Science, 45(5), 915-932. https://doi.org/10.1177/2399808317690149
Birenboim, A., Ben-Nun Bloom, P., Levit, H., & Omer, I. (2021). The study of walking, walkability and wellbeing in immersive virtual environments. International Journal of Environmental Research and Public Health, 18(2), 364. https://doi.org/10.3390/ijerph18020364
Birenboim, A., Dijst, M., Ettema, D., De Kruijf, J., De Leeuw, G., & Dogterom, N. (2019). The utilization of immersive virtual environments for the investigation of environmental preferences. Landscape and Urban Planning, 189, 129-138. https://doi.org/10.1016/j.landurbplan.2019.04.011
Birenboim, A., Dijst, M., Scheepers, F. E., Poelman, M. P., & Helbich, M. (2019). Wearables and location tracking technologies for mental-state sensing in outdoor environments. The Professional Geographer, 71(3), 449-461. https://doi.org/10.1080/00330124.2018.1547978
Boletsis, C., & Cedergren, J. E. (2019). VR locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Advances in Human-Computer Interaction, 2019, 1-15. https://doi.org/10.1155/2019/7420781
Calogiuri, G., Litleskare, S., Fagerheim, K. A., Rydgren, T. L., Brambilla, E., & Thurston, M. (2018). Experiencing nature through immersive virtual environments: Environmental perceptions, physical engagement, and affective responses during a simulated nature walk. Frontiers in Psychology, 8, 2321. https://doi.org/10.3389/fpsyg.2017.02321
Campanella, S., Altaleb, A., Belli, A., Pierleoni, P., & Palma, L. (2023). A method for stress detection using Empatica E4 bracelet and machine-learning techniques. Sensors, 23(7), 3565. https://doi.org/10.3390/s23073565
Chakraborty, S., Kane, A., Gagnon, H., McNamara, T., & Bodenheimer, B. (2024). Comparative effectiveness of an omnidirectional treadmill versus natural walking for navigating in virtual environments. ACM Symposium on Applied Perception 2024, 1-10. https://doi.org/10.1145/3675231.3675243
Chrisinger, B. W., & King, A. C. (2018). Stress experiences in neighborhood and social environments (SENSE): A pilot study to integrate the quantified self with citizen science to improve the built environment and health. International Journal of Health Geographics, 17(1), 17. https://doi.org/10.1186/s12942-018-0140-1
Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385-396. https://doi.org/10.2307/2136404
Gaertner, R. J., Kossmann, K. E., Benz, A. B. E., Bentele, U. U., Meier, M., Denk, B. F., Klink, E. S. C., Dimitroff, S. J., & Pruessner, J. C. (2023). Relaxing effects of virtual environments on the autonomic nervous system indicated by heart rate variability: A systematic review. Journal of Environmental Psychology, 88, 102035. https://doi.org/10.1016/j.jenvp.2023.102035
Gao, X., Geng, Y., Spengler, J. D., Long, J., Liu, N., Luo, Z., Kalantari, S., & Zhuang, W. (2025). Evaluating the impact of spatial openness on stress recovery: A virtual reality experiment study with psychological and physiological measurements. Building and Environment, 269, 112434. https://doi.org/10.1016/j.buildenv.2024.112434
Gardhouse, K., & Anderson, A. K. (2013). Objective and subjective measurements in affective science. In J. Armony & P. Vuilleumier (Eds.), The Cambridge Handbook of Human Affective Neuroscience (1st ed., pp. 57-81). Cambridge University Press. https://doi.org/10.1017/CBO9780511843716.005
Ghanbari, M., Dijst, M., McCall, R., & Perchoux, C. (2024). The use of Virtual Reality (VR) to assess the impact of geographical environments on walking and cycling: A systematic literature review. International Journal of Health Geographics, 23(1), 15. https://doi.org/10.1186/s12942-024-00375-6
Grubel, J. (2023). The design, experiment, analyse, and reproduce principle for experimentation in virtual reality. Frontiers in Virtual Reality, 4, 1069423. https://doi.org/10.3389/frvir.2023.1069423
Hager, H., Cakmak, T., & Jagers, J. (2019). Cyberith virtualizer ELITE 2 - second generation VR locomotion device based on a 2 DoF motion platform. Laval Virtual Conference, Laval, France. https://blog.laval-virtual.com/wp-content/uploads/2019/11/Cyberith-Virtualizer-ELITE-2-Paper.pdf
Homami, H., Quigley, A., & Barrera Machuca, M. D. (2025). Omnidirectional VR treadmills walking techniques: Comparing walking-in-place and sliding vs natural walking. 2025 IEEE Conference Virtual Reality and 3D User Interfaces (VR), 634-644. https://doi.org/10.1109/VR59515.2025.00086
Hooks, K., Ferguson, W., Morillo, P., & Cruz-Neira, C. (2020). Evaluating the user experience of omnidirectional VR walking simulators. Entertainment Computing, 34, 100352. https://doi.org/10.1016/j.entcom.2020.100352
Jasper, A., Sepich, N. C., Gilbert, S. B., Kelly, J. W., & Dorneich, M. C. (2023). Predicting cybersickness using individual and task characteristics. Computers in Human Behavior, 146, 107800. https://doi.org/10.1016/j.chb.2023.107800
Johansson, M., Sternudd, C., & Karrholm, M. (2016). Perceived urban design qualities and affective experiences of walking. Journal of Urban Design, 21(2), 256-275. https://doi.org/10.1080/13574809.2015.1133225
Joseph, A., Browning, M. H. E. M., & Jiang, S. (2020). Using immersive virtual environments (IVEs) to conduct environmental design research: A primer and decision framework. HERD: Health Environments Research & Design Journal, 13(3), 11-25. https://doi.org/10.1177/1937586720924787
Kalantari, S., Mostafavi, A., Xu, T. B., Lee, A. S., & Yang, Q. (2024). Comparing spatial navigation in a virtual environment vs. An identical real environment across the adult lifespan. Computers in Human Behavior, 157, 108210. https://doi.org/10.1016/j.chb.2024.108210
Kalantari, S., Rounds, J. D., Kan, J., Tripathi, V., & Cruz-Garza, J. G. (2021). Comparing physiological responses during cognitive tests in virtual environments vs. In identical real-world environments. Scientific Reports, 11(1), 10227. https://doi.org/10.1038/s41598-021-89297-y
Kang, J. H., Yadav, N., Ramadoss, S., & Yeon, J. (2023). Reliability of distance estimation in virtual reality space: A quantitative approach for construction management. Computers in Human Behavior, 145, 107773. https://doi.org/10.1016/j.chb.2023.107773
Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University Press.
Kim, S.-N., & Lee, H. (2022). Capturing reality: Validation of omnidirectional video-based immersive virtual reality as a streetscape quality auditing method. Landscape and Urban Planning, 218, 104290. https://doi.org/10.1016/j.landurbplan.2021.104290
Kleckner, I. R., Jones, R. M., Wilder-Smith, O., Wormwood, J. B., Akcakaya, M., Quigley, K. S., Lord, C., & Goodwin, M. S. (2018). Simple, transparent, and flexible automated quality assessment procedures for ambulatory electrodermal activity data. IEEE Transactions on Biomedical Engineering, 65(7), 1460-1467. https://doi.org/10.1109/TBME.2017.2758643
Koo, B. W., Guhathakurta, S., & Botchwey, N. (2022). How are neighborhood and street-level walkability factors associated with walking behaviors? A big data approach using street view images. Environment and Behavior, 54(1), 211-241. https://doi.org/10.1177/00139165211014609
Kourtesis, P., Linnell, J., Amir, R., Argelaguet, F., & MacPherson, S. E. (2023). Cybersickness in virtual reality questionnaire (CSQ-VR): A validation and comparison against SSQ and VRSQ. Virtual Worlds, 2(1), 16-35. https://doi.org/10.3390/virtualworlds2010002
Kreimeier, J., Ullmann, D., Kipke, H., & Gotzelmann, T. (2020). Initial evaluation of different types of virtual reality locomotion towards a pedestrian simulator for urban and transportation planning. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 1-6. https://doi.org/10.1145/3334480.3382958
Kuliga, S. F., Thrash, T., Dalton, R. C., & Holscher, C. (2015). Virtual reality as an empirical research tool-Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375. https://doi.org/10.1016/j.compenvurbsys.2015.09.006
Kyriakou, K., Resch, B., Sagl, G., Petutschnig, A., Werner, C., Niederseer, D., Liedlgruber, M., Wilhelm, F., Osborne, T., & Pykett, J. (2019). Detecting moments of stress from measurements of wearable physiological sensors. Sensors, 19(17), 3805. https://doi.org/10.3390/s19173805
Lee, H., & Kim, S.-N. (2021). Perceived safety and pedestrian performance in pedestrian priority streets (PPSs) in Seoul, Korea: A virtual reality experiment and trace mapping. International Journal of Environmental Research and Public Health, 18(5), 2501. https://doi.org/10.3390/ijerph18052501
Li, Y., Yabuki, N., & Fukuda, T. (2022). Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning. Sustainable Cities and Society, 86, 104140. https://doi.org/10.1016/j.scs.2022.104140
Liao, B., Van Den Berg, P. E. W., Van Wesemael, P. J. V., & Arentze, T. A. (2022). Individuals’ perception of walkability: Results of a conjoint experiment using videos of virtual environments. Cities, 125, 103650. https://doi.org/10.1016/j.cities.2022.103650
Lim, K. Y. T., Nguyen Thien, M. T., Nguyen Duc, M. A., & Posada-Quintero, H. F. (2024). Application of DIY electrodermal activity wristband in detecting stress and affective responses of students. Bioengineering, 11(3), 291. https://doi.org/10.3390/bioengineering11030291
Llinares, C., Higuera-Trujillo, J. L., & Montanana, A. (2023). A comparative study of real and virtual environment via psychological and physiological responses. Applied Sciences, 14(1), 232. https://doi.org/10.3390/app14010232
Lombard, M., & Ditton, T. (1997). At the heart of it all: The concept of presence. Journal of Computer-Mediated Communication, 3(2). https://doi.org/10.1111/j.1083-6101.1997.tb00072.x
Mousas, C., Kao, D., Koilias, A., & Rekabdar, B. (2020). Real and virtual environment mismatching induces arousal and alters movement behavior. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 626-635. https://doi.org/10.1109/VR46266.2020.1581211592060
Nazemi, M., Van Eggermond, M. A. B., Erath, A., Schaffner, D., Joos, M., & Axhausen, K. W. (2021). Studying bicyclists’ perceived level of safety using a bicycle simulator combined with immersive virtual reality. Accident Analysis & Prevention, 151, 105943. https://doi.org/10.1016/j.aap.2020.105943
Oselinsky, K., Spitzer, A. N., Yu, Y., Ortega, F. R., Malinin, L. H., Curl, K. A., Leach, H., & Graham, D. J. (2023). Virtual reality assessment of walking in a modifiable urban environment: A feasibility and acceptability study. Scientific Reports, 13(1), 5867. https://doi.org/10.1038/s41598-023-32139-w
Pastel, S., Burger, D., Chen, C. H., Petri, K., & Witte, K. (2022). Comparison of spatial orientation skill between real and virtual environment. Virtual Reality, 26(1), 91-104. https://doi.org/10.1007/s10055-021-00539-w
Petukhov, I., Steshina, L., Tanryverdiev, I., & Kurasov, P. (2024). Comparison of the perception of space in virtual reality and in the real world. E3S Web of Conferences, 486, 03023. https://doi.org/10.1051/e3sconf/202448603023
Pizzi, G., Scarpi, D., Pichierri, M., & Vannucci, V. (2019). Virtual reality, real reactions?: Comparing consumers’ perceptions and shopping orientation across physical and virtual-reality retail stores. Computers in Human Behavior, 96, 1-12. https://doi.org/10.1016/j.chb.2019.02.008
Posada-Quintero, H. F., Bolkhovsky, J. B., Qin, M., & Chon, K. H. (2018). Human performance deterioration due to prolonged wakefulness can be accurately detected using time-varying spectral analysis of electrodermal activity. Human Factors: The Journal of the Human Factors and Ergonomics Society, 60(7), 1035-1047. https://doi.org/10.1177/0018720818781196
Presti, P., Ruzzon, D., Avanzini, P., Caruana, F., Rizzolatti, G., & Vecchiato, G. (2022). Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments. Scientific Reports, 12(1), 13376. https://doi.org/10.1038/s41598-022-17689-9
Ramaseri Chandra, A. N., El Jamiy, F., & Reza, H. (2022). A Systematic Survey on Cybersickness in Virtual Environments. Computers, 11(4), 51. https://doi.org/10.3390/computers11040051
Rivu, R., Jiang, R., Makela, V., Hassib, M., & Alt, F. (2021). Emotion elicitation techniques in virtual reality. In C. Ardito, R. Lanzilotti, A. Malizia, H. Petrie, A. Piccinno, G. Desolda, & K. Inkpen (Eds.), Human-Computer Interaction - INTERACT 2021 (Vol. 12932, pp. 93-114). Springer International Publishing. https://doi.org/10.1007/978-3-030-85623-6_8
Roe, J., & McCay, L. (2021). Restorative cities: Urban design for mental health and wellbeing. Bloomsbury Visual Arts.
Shoval, N., Schvimer, Y., & Tamir, M. (2018). Tracking technologies and urban analysis: Adding the emotional dimension. Cities, 72, 34-42. https://doi.org/10.1016/j.cities.2017.08.005
Stuyck, H., Dalla Costa, L., Cleeremans, A., & Van Den Bussche, E. (2022). Validity of the Empatica E4 wristband to estimate resting-state heart rate variability in a lab-based context. International Journal of Psychophysiology, 182, 105-118. https://doi.org/10.1016/j.ijpsycho.2022.10.003
The Whoqol Group. (1998). Development of the world health organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(3), 551-558. https://doi.org/10.1017/S0033291798006667
Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology, 11(3), 201-230. https://doi.org/10.1016/S0272-4944(05)80184-7
Van Cauwenberg, J., De Bourdeaudhuij, I., Clarys, P., Nasar, J., Salmon, J., Goubert, L., & Deforche, B. (2016). Street characteristics preferred for transportation walking among older adults: A choice-based conjoint analysis with manipulated photographs. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 6. https://doi.org/10.1186/s12966-016-0331-8
Vorderer, P., Wirth, W., Gouveia, F. R., Biocca, F., Saari, T., Futz Jancke, Bocking, S., Schramm, H., Gysbers, A., Hartmann, T., Klimmt, C., Laarni, J., Ravaja, N., Sacau, A., Baumgartner, T., & Jancke, P. (2004). MEC spatial presence questionnaire (MEC-SPQ, English and German version): Short documentation and instructions for application. https://doi.org/10.13140/RG.2.2.26232.42249
Winz, M., Soderstrom, O., Rizzotti-Kaddouri, A., Visinand, S., Ourednik, A., Kuster, J., & Bailey, B. (2022). Stress and emotional arousal in urban environments: A biosocial study with persons having experienced a first-episode of psychosis and persons at risk. Health & Place, 75, 102762. https://doi.org/10.1016/j.healthplace.2022.102762
Xia, G., Henry, P., Queiroz, F., & Westland, S. (2021). Effects of coloured lighting in the real world environment and virtual reality. Journal of the International Colour Association, 27, 9-25.
Zhao, Y., Van Den Berg, P. E. W., Ossokina, I. V., & Arentze, T. A. (2022). Individual momentary experiences of neighborhood public spaces: Results of a virtual environment based stated preference experiment. Sustainability, 14(9), 4938. https://doi.org/10.3390/su14094938