Paper published on a website (Scientific congresses, symposiums and conference proceedings)
LiMTR: Time Series Motion Prediction for Diverse Road Users through Multimodal Feature Integration
Oerlemans, Camiel; Grooten, Bram; Braat, Michiel et al.
2024NeurIPS 2024 Workshop - Time Series in the Age of Large Models
Peer reviewed
 

Files


Full Text
2410.15819v1.pdf
Author postprint (319.8 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Machine Learning; Autonomous Driving; Deep Learning
Abstract :
[en] Predicting the behavior of road users accurately is crucial to enable the safe operation of autonomous vehicles in urban or densely populated areas. Therefore, there has been a growing interest in time series motion prediction research, leading to significant advancements in state-of-the-art techniques in recent years. However, the potential of using LiDAR data to capture more detailed local features, such as a person's gaze or posture, remains largely unexplored. To address this, we develop a novel multimodal approach for motion prediction based on the PointNet foundation model architecture, incorporating local LiDAR features. Evaluation on the Waymo Open Dataset shows a performance improvement of 6.20% and 1.58% in minADE and mAP respectively, when integrated and compared with the previous state-of-the-art MTR. We open-source the code of our LiMTR model.
Disciplines :
Computer science
Author, co-author :
Oerlemans, Camiel;  Eindhoven University of Technology
Grooten, Bram;  Eindhoven University of Technology
Braat, Michiel;  TNO - Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
Alassi, Alaa;  TNO - Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
Silvas, Emilia;  TNO - Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
MOCANU, Decebal Constantin  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
External co-authors :
yes
Language :
English
Title :
LiMTR: Time Series Motion Prediction for Diverse Road Users through Multimodal Feature Integration
Publication date :
10 October 2024
Event name :
NeurIPS 2024 Workshop - Time Series in the Age of Large Models
Event place :
Vancouver, Canada
Event date :
10 - 15 December 2024
Audience :
International
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Development Goals :
9. Industry, innovation and infrastructure
Available on ORBilu :
since 01 February 2026

Statistics


Number of views
2 (0 by Unilu)
Number of downloads
1 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu