Quantum Information , Physical Layer , Communication Systems , Multiple-input Multiple-output , Quantum State , Quantum Computing , Modulation Technique , Quantum Sensor , Coherent Control , Multiplex Technique , Spatial Multiplexing , Quantum Channel , Optical System , Class Of Systems , Wireless Communication Systems , Optical Communication , Quantum Coherence , Orbital Angular Momentum , Coherent State , Low Earth Orbit , Quantum Key Distribution , Key Rate , Quantum Error Correction , Single-photon Avalanche Diode , Orbital Angular Momentum Modes , Homodyne Detection , Quantum Network , Single-photon Detectors , Free-space Optical Communication , Spatial Light Modulat
Abstract :
[en] Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols. The main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity. This feat requires a new approach to communication system design which efficiently exploits the available physical layer resources, while respecting the limitations and principles of quantum information. Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well. In this survey, the distinctive aspects of physical layer quantum communications are highlighted in a attempt to draw commonalities and divergences between classic and quantum communications. More specifically, we begin by overviewing the quantum channels and use cases over diverse optical propagation media, shedding light on the concepts of crosstalk and interference. Subsequently, we survey quantum sources, detectors, channels and modulation techniques. More importantly, we discuss and analyze spatial multiplexing techniques, such as coherent control, multiplexing, diversity and MIMO. Finally, we identify synergies between the two communication technologies and grand open challenges that can be pivotal in the development of next-generation quantum communication systems.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
KOUDIA, Seid ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg, Luxembourg
OLEYNIK, Leonardo ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg, Luxembourg
BAYRAKTAR, Mert ; University of Luxembourg ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg, Luxembourg
UR REHMAN, Junaid ; University of Luxembourg ; Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
CHATZINOTAS, Symeon ; University of Luxembourg ; Interdisciplinary Centre for Security, Reliability, and Trust (SnT), Luxembourg, Luxembourg
External co-authors :
yes
Language :
English
Title :
Physical Layer Aspects of Quantum Communications: A Survey
Publication date :
December 2025
Journal title :
IEEE Communications Surveys and Tutorials
ISSN :
1553-877X
eISSN :
2373-745X
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quantum internet protocol stack: A comprehensive survey,” Comput. Netw., vol. 213, Aug. 2022, Art. no. 109092.
N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, “Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook,” IEEE Commun. Surv. Tut., vol. 21, no. 1, pp. 881–919, 1st Quart., 2019.
Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in quantum computing and communications,” IEEE Commun. Surv. Tut., vol. 25, no. 2, pp. 1059–1095, 2nd Quart., 2023.
I. A. Alimi and P. P. Monteiro, “Revolutionizing free-space optics: A survey of enabling technologies, challenges, trends, and prospects of beyond 5G free-space optical (FSO) communication systems,” Sensors, vol. 24, no. 24, p. 8036, Dec. 2024.
H. Dutta and A. K. Bhuyan, “Quantum communication: From fundamentals to recent trends, challenges and open problems,” 2024, arXiv:2406.04492.
W. Zhao et al., “Quantum computing in wireless communications and networking: A tutorial-cum-survey,” 2024, arXiv:2406.02240.
S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. 9288, Oct. 2018.
Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The evolution of quantum key distribution networks: On the road to the QInternet,” IEEE Commun. Surv. Tut., vol. 24, no. 2, pp. 839–894, 2nd Quart., 2022.
S. Wei et al., “Towards real-world quantum networks: A review,” Laser & Photon. Rev., vol. 16, no. 3, 2022, Art. no. 2100219.
U. Khalid, J. U. Rehman, S. N. Paing, H. Jung, T. Q. Duong, and H. Shin, “Quantum network engineering in the NISQ age: Principles, missions, and challenges,” IEEE Netw., vol. 38, no. 1, pp. 112–123, Jan. 2024.
H. Al-Hraishawi, J. U. Rehman, M. Razavi, and S. Chatzinotas, “Characterizing and utilizing the interplay between quantum technologies and non-terrestrial networks,” IEEE Open J. Commun. Soc., vol. 5, pp. 1937–1957, 2024.
J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon., vol. 3, no. 12, pp. 687–695, Dec. 2009.
J. Wang et al., “Integrated photonic quantum technologies,” Nature Photon., vol. 14, no. 5, pp. 273–284, May 2019.
S. Slussarenko and G. J. Pryde, “Photonic quantum information processing: A concise review,” Appl. Phys. Rev., vol. 6, no. 4, Dec. 2019, Art. no. 041303.
T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter, “Wireless communications: Past events and a future perspective,” IEEE Commun. Mag., vol. 40, no. 5, pp. 148–161, May 2002.
I. Shomorony and A. S. Avestimehr, “Degrees of freedom of two-hop wireless networks: Everyone gets the entire cake,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2417–2431, May 2014.
V. R. Cadambe and S. A. Jafar, “Degrees of freedom of wireless networks with relays, feedback, cooperation, and full duplex operation,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2334–2344, May 2009.
L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.
G. C. Clark Jr. and J. B. Cain, Error-Correction Coding for Digital Communications. Cham, Switzerland: Springer, Jun. 2013.
W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, Oct. 1982.
R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A, Gen. Phys., vol. 58, no. 3, pp. 1827–1832, Sep. 1998.
N. Gisin and S. Massar, “Optimal quantum cloning machines,” Phys. Rev. Lett., vol. 79, no. 11, pp. 2153–2156, Sep. 1997.
D. Bruss, A. Ekert, and C. Macchiavello, “Optimal universal quantum cloning and state estimation,” Phys. Rev. Lett., vol. 81, no. 12, pp. 2598–2601, Sep. 1998.
V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Modern Phys., vol. 77, no. 4, pp. 1225–1256, Nov. 2005.
S. L. Braunstein, “Quantum error correction for communication with linear optics,” Nature, vol. 394, no. 6688, pp. 47–49, Jul. 1998.
J. Roffe, “Quantum error correction: An introductory guide,” Contemp. Phys., vol. 60, no. 3, pp. 226–245, Jul. 2019.
G. G. La Guardia, “Quantum error-correcting codes,” in Quantum Error Correction: Symmetric, Asymmetric, Synchronizable, Convolutional Codes. Cham, Switzerland: Springer, 2020, pp. 25–41.
U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev., vol. 4, no. 3, pp. 337–354, 2009.
V. Lottici, A. D’Andrea, and U. Mengali, “Channel estimation for ultra-wideband communications,” IEEE J. Sel. Areas Commun., vol. 20, no. 9, pp. 1638–1645, Dec. 2002.
S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcast., vol. 48, no. 3, pp. 223–229, Sep. 2002.
H. Arslan and G. E. Bottomley, “Channel estimation in narrowband wireless communication systems,” Wireless Commun. Mobile Comput., vol. 1, no. 2, pp. 201–219, Apr. 2001.
S. Ni, J. Zhao, and Y. Gong, “Optimal pilot design in massive MIMO systems based on channel estimation,” IET Commun., vol. 11, no. 7, pp. 975–984, May 2017.
K. Shen, H. V. Cheng, X. Chen, Y. C. Eldar, and W. Yu, “Enhanced channel estimation in massive MIMO via coordinated pilot design,” IEEE Trans. Commun., vol. 68, no. 11, pp. 6872–6885, Nov. 2020.
R. Mohammadian, A. Amini, and B. H. Khalaj, “Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 129–140, Jan. 2017.
R. Jonsson and R. Di Candia, “Gaussian quantum estimation of the loss parameter in a thermal environment,” J. Phys. A: Math. Theor., vol. 55, no. 38, Aug. 2022, Art. no. 385301.
M. Mohseni, A. T. Rezakhani, and D. A. Lidar, “Quantum-process tomography: Resource analysis of different strategies,” Phys. Rev. A, Gen. Phys., vol. 77, no. 3, Mar. 2008, Art. no. 032322.
S. Rahimi-Keshari, A. Scherer, A. Mann, A. T. Rezakhani, A. I. Lvovsky, and B. C. Sanders, “Quantum process tomography with coherent states,” New J. Phys., vol. 13, no. 1, Jan. 2011, Art. no. 013006.
J. ur Rehman, H. Al-Hraishawi, T. Q. Duong, S. Chatzinotas, and H. Shin, “On estimating time-varying Pauli noise,” IEEE Trans. Commun., vol. 72, no. 4, pp. 2079–2089, Apr. 2024.
J. E. Martinez, P. Fuentes, P. Crespo, and J. Garcia-Frias, “Time-varying quantum channel models for superconducting qubits,” npj Quantum Inf., vol. 7, no. 1, pp. 1–10, Jul. 2021.
J. E. Martinez, P. Fuentes, A. de Marti Iolius, J. Garcia-Frias, J. R. Fonollosa, and P. M. Crespo, “Multiqubit time-varying quantum channels for NISQ-era superconducting quantum processors,” Phys. Rev. Res., vol. 5, no. 3, Jul. 2023, Art. no. 033055.
B. Ndagano et al., “Characterizing quantum channels with non-separable states of classical light,” Nature Phys., vol. 13, no. 4, pp. 397–402, Apr. 2017.
Y. Xie, J. Li, R. Malaney, and J. Yuan, “Channel identification and its impact on quantum LDPC code performance,” in Proc. Austral. Commun. Theory Workshop (AusCTW), Jan. 2012, pp. 140–144.
J. E. Martinez, P. Fuentes, P. M. Crespo, and J. Garcia-Frías, “Pauli channel online estimation protocol for quantum turbo codes,” in Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE), Oct. 2020, pp. 102–108.
J. U. Rehman and H. Shin, “Simultaneous communication and parameter estimation of Pauli channels,” in Proc. IEEE Int. Conf. Commun. (ICC), Seoul, South Korea, May 2022, pp. 648–653.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge, U.K.: Cambridge Univ. Press, 2010.
J. Watrous, The Theory of Quantum Information. Cambridge, U.K.: Cambridge Univ. Press, 2018.
B. Harper, B. Tonekaboni, B. Goldozian, M. Sevior, and M. Usman, “Crosstalk attacks and defence in a shared quantum computing environment,” 2024, arXiv:2402.02753.
S. Seo, J. Seong, and J. Bae, “Mitigation of crosstalk errors in a quantum measurement and its applications,” 2021, arXiv:2112.10651.
S. Bravyi, S. Sheldon, A. Kandala, D. C. Mckay, and J. M. Gambetta, “Mitigating measurement errors in multiqubit experiments,” Phys. Rev. A, Gen. Phys., vol. 103, no. 4, Apr. 2021, Art. no. 042605.
G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hollenberg, and K. Modi, “Demonstration of non-Markovian process characterisation and control on a quantum processor,” Nature Commun., vol. 11, no. 1, p. 6301, Dec. 2020.
G. Torlai, C. J. Wood, A. Acharya, G. Carleo, J. Carrasquilla, and L. Aolita, “Quantum process tomography with unsupervised learning and tensor networks,” Nature Commun., vol. 14, no. 1, p. 2858, May 2023.
S. Filippov, M. Leahy, M. A. C. Rossi, and G. García-Pérez, “Scalable tensor-network error mitigation for near-term quantum computing,” 2023, arXiv:2307.11740.
S. Mangini, M. Cattaneo, D. Cavalcanti, S. Filippov, M. A. C. Rossi, and G. García-Pérez, “Tensor network noise characterization for near-term quantum computers,” 2024, arXiv:2402.08556.
S. Koudia, A. S. Cacciapuoti, K. Simonov, and M. Caleffi, “How deep the theory of quantum communications goes: Superadditivity, superactivation and causal activation,” IEEE Commun. Surv. Tut., vol. 24, no. 4, pp. 1926–1956, 4th Quart., 2022.
L. Gyongyosi, S. Imre, and H. V. Nguyen, “A survey on quantum channel capacities,” IEEE Commun. Surv. Tut., vol. 20, no. 2, pp. 1149–1205, 2nd Quart., 2018.
A. S. Holevo, “Complementary channels and the additivity problem,” Theory Probab. Its Appl., vol. 51, no. 1, pp. 92–100, Jan. 2007.
G. Smith and J. Yard, “Quantum communication with zero-capacity channels,” Science, vol. 321, no. 5897, pp. 1812–1815, Sep. 2008.
L. Lami and M. M. Wilde, “Exact solution for the quantum and private capacities of bosonic dephasing channels,” Nature Photon., vol. 17, no. 6, pp. 525–530, Jun. 2023.
J. ur Rehman, L. Oleynik, S. Koudia, M. Bayraktar, and S. Chatzinotas, “Diversity and multiplexing in quantum MIMO channels,” EPJ Quantum Technol., vol. 12, no. 1, pp. 1–11, Dec. 2025.
S. Koudia, L. Oleynik, M. Bayraktar, J. ur Rehman, and S. Chatzinotas, “Spatial-mode diversity and multiplexing for continuous variables quantum communications,” 2024, arXiv:2409.04334.
Z. Wang, T. C. Ralph, R. Aguinaldo, and R. Malaney, “Exploiting spatial diversity in Earth-to-satellite quantum-classical communications,” 2024, arXiv:2407.02224.
N. L. Anipeddi, J. Horgan, D. K. L. Oi, and D. Kilbane, “Optical ground station diversity for satellite quantum key distribution in Ireland,” 2024, arXiv:2408.08657.
O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “Multiplexed memory-insensitive quantum repeaters,” Phys. Rev. Lett., vol. 98, no. 6, Feb. 2007, Art. no. 060502.
C. E. Bradley et al., “A ten-qubit solid-state spin register with quantum memory up to one minute,” Phys. Rev. X, vol. 9, no. 3, Sep. 2019, Art. no. 031045.
I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Phys. Rev. Lett., vol. 118, no. 25, Jun. 2017, Art. no. 250502.
T. R. Tan et al., “Multi-element logic gates for trapped-ion qubits,” Nature, vol. 528, no. 7582, pp. 380–383, Dec. 2015.
E. A. Stinaff et al., “Optical signatures of coupled quantum dots,” Science, vol. 311, no. 5761, pp. 636–639, Feb. 2006.
L. Egan et al., “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, no. 7880, pp. 281–286, Oct. 2021.
R. Acharya et al., “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, 2023.
M. H. Abobeih et al., “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, no. 7916, pp. 884–889, Jun. 2022.
N. Lauk et al., “Perspectives on quantum transduction,” Quantum Sci. Technol., vol. 5, no. 2, Mar. 2020, Art. no. 020501.
F. Schmidt, D. Miller, and P. van Loock, “Error-corrected quantum repeaters with GKP qudits,” 2023, arXiv:2303.16034.
K. Fukui, R. N. Alexander, and P. van Loock, “All-optical long-distance quantum communication with Gottesman–Kitaev–Preskill qubits,” Phys. Rev. Res., vol. 3, no. 3, Aug. 2021, Art. no. 033118.
B. A. Bell, D. A. Herrera-Martí, M. S. Tame, D. Markham, W. J. Wadsworth, and J. G. Rarity, “Experimental demonstration of a graph state quantum error-correction code,” Nature Commun., vol. 5, no. 1, p. 3658, Apr. 2014.
C. Rottondi, P. Martelli, P. Boffi, L. Barletta, and M. Tornatore, “Crosstalk-aware core and spectrum assignment in a multicore optical link with flexible grid,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2144–2156, Mar. 2019.
T. Hayashi et al., “Field-deployed multi-core fiber testbed,” in Proc. 24th OptoElectronics Commun. Conf. (OECC) Int. Conf. Photon. Switching Comput. (PSC), Jul. 2019, pp. 1–3.
T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Strongly-coupled multi-core fiber and its optical characteristics for MIMO transmission systems,” Opt. Fiber Technol., vol. 35, pp. 8–18, Feb. 2017.
R. S. Luís et al., “Crosstalk impact on the performance of wideband multicore-fiber transmission systems,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 4, pp. 1–9, Jul. 2020.
E. E. Moghaddam, H. Beyranvand, and J. A. Salehi, “Resource allocation in space division multiplexed elastic optical networks secured with quantum key distribution,” IEEE J. Sel. Areas Commun., vol. 39, no. 9, pp. 2688–2700, Sep. 2021.
M. Ureña, I. Gasulla, F. J. Fraile, and J. Capmany, “Modeling optical fiber space division multiplexed quantum key distribution systems,” Opt. Exp., vol. 27, no. 5, pp. 7047–7063, Mar. 2019.
M. Zahidy et al., “Practical high-dimensional quantum key distribution protocol over deployed multicore fiber,” Nature Commun., vol. 15, no. 1, p. 1651, Feb. 2024.
T. A. Eriksson et al., “Inter-core crosstalk impact of classical channels on CV-QKD in multicore fiber transmission,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 2019, pp. 1–3.
P. Tandon and A. Zakharian, “Impact of multicore fiber (MCF) opticals, cross-talk, radiative leakage loss, splice loss and propagation configuration on the system transmission performance,” Opt. Commun., vol. 539, Jul. 2023, Art. no. 129483.
H. Yuan, M. Furdek, A. Muhammad, A. Saljoghei, L. Wosinska, and G. Zervas, “Space-division multiplexing in data center networks: On multi-core fiber solutions and crosstalk-suppressed resource allocation,” J. Opt. Commun. Netw., vol. 10, no. 4, pp. 272–288, Apr. 2018.
L. Sun et al., “Mitigating the inter-core crosstalk of multicore fiber transmission by orthogonal filtering,” IEEE Photon. Technol. Lett., vol. 34, no. 24, pp. 1373–1376, Dec. 15, 2022.
T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Exp., vol. 19, no. 17, pp. 16576–16592, Aug. 2011.
K. Takenaga et al., “Reduction of crosstalk by trench-assisted multicore fiber,” in Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Optic Eng. Conf., Mar. 2011, pp. 1–3.
B. Jaramillo Ávila, J. M. Torres, R. D. J. León-Montiel, and B. M. Rodríguez-Lara, “Optimal crosstalk suppression in multicore fibers,” Sci. Rep., vol. 9, no. 1, p. 15737, Oct. 2019.
M. C. Gökçe, Y. Baykal, and M. Uysal, “Performance analysis of multiple-input multiple-output free-space optical systems with partially coherent Gaussian beams and finite-sized detectors,” Opt. Eng., vol. 55, no. 11, Nov. 2016, Art. no. 111607.
M. C. Gökçe, Y. Baykal, and M. Uysal, “Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 33, no. 6, pp. 1041–1048, Jun. 2016.
M. C. Gökçe, Y. Baykal, and M. Uysal, “Bit error rate analysis of MISO FSO systems,” Waves Random Complex Media, vol. 26, no. 4, pp. 642–649, Oct. 2016.
H. Nabil, A. Balhamri, M. Bayraktar, and A. Belafhal, “Propagation characteristics of a partially coherent Gaussian schell-model array vortex beam in the joint turbulence effect of a jet engine and atmosphere,” Annalen der Physik, vol. 535, no. 10, Oct. 2023, Art. no. 2300232.
A. A. Semenov and W. Vogel, “Quantum light in the turbulent atmosphere,” Phys. Rev. A, Gen. Phys., vol. 80, no. 2, Aug. 2009, Art. no. 021802.
A. Khodadad Kashi, L. Caspani, and M. Kues, “Spectral hong-oumandel effect between a heralded single-photon state and a thermal field: Multiphoton contamination and the nonclassicality threshold,” Phys. Rev. Lett., vol. 131, no. 23, Dec. 2023, Art. no. 233601.
D. Vasylyev, A. A. Semenov, and W. Vogel, “Atmospheric quantum channels with weak and strong turbulence,” Phys. Rev. Lett., vol. 117, no. 9, Aug. 2016, Art. no. 090501.
D. Y. Vasylyev, A. A. Semenov, and W. Vogel, “Toward global quantum communication: Beam wandering preserves nonclassicality,” Phys. Rev. Lett., vol. 108, no. 22, Jun. 2012, Art. no. 220501.
L. C. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media. Bellingham, WA, USA: SPIE Press, 2005.
M. Yüceer and H. T. Eyyuboglu, “Laguerre–Gaussian beam scintillation on slant paths,” Appl. Phys. B, vol. 109, no. 2, pp. 311–316, Nov. 2012.
S. Wang, P. Huang, T. Wang, and G. Zeng, “Atmospheric effects on continuous-variable quantum key distribution,” New J. Phys., vol. 20, no. 8, Aug. 2018, Art. no. 083037.
G. Chai, Z. Cao, W. Liu, S. Wang, P. Huang, and G. Zeng, “Parameter estimation of atmospheric continuous-variable quantum key distribution,” Phys. Rev. A, Gen. Phys., vol. 99, no. 3, Mar. 2019, Art. no. 032326.
E. Villaseñor, R. Malaney, K. A. Mudge, and K. J. Grant, “Atmospheric effects on satellite-to-ground quantum key distribution using coherent states,” in Proc. IEEE Global Commun. Conf., Dec. 2020, pp. 1–6.
Y. Zhang, S. Prabhakar, A. H. Ibrahim, F. S. Roux, A. Forbes, and T. Konrad, “Experimentally observed decay of high-dimensional entanglement through turbulence,” Phys. Rev. A, Gen. Phys., vol. 94, no. 3, Sep. 2016, Art. no. 032310.
G. Vallone et al., “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett., vol. 113, no. 6, Aug. 2014, Art. no. 060503.
R. Ursin et al., “Entanglement-based quantum communication over 144km,” Nature Phys., vol. 3, no. 7, pp. 481–486, Jul. 2007.
M. T. Gruneisen et al., “Adaptive-optics-enabled quantum communication: A technique for daytime space-to-Earth links,” Phys. Rev. Appl., vol. 16, no. 1, Jul. 2021, Art. no. 014067.
V. M. Acosta et al., “Analysis of satellite-to-ground quantum key distribution with adaptive optics,” New J. Phys., vol. 26, no. 2, Feb. 2024, Art. no. 023039.
Y. Wang, X. Wu, L. Zhang, D. Huang, Q. Liao, and Y. Guo, “Performance improvement of free-space continuous-variable quantum key distribution with an adaptive optics unit,” Quantum Inf. Process., vol. 18, no. 8, p. 251, Aug. 2019.
M. Sayat et al., “Experimental effects of turbulence on coherent states in a free-space channel using adaptive optics for continuous variable quantum key distribution,” Proc. SPIE, vol. 9354, pp. 65–72, Apr. 2024, doi: 10.1117/12.3000049.
Z. Tao, Y. Ren, A. Abdukirim, S. Liu, and R. Rao, “Mitigating the effect of atmospheric turbulence on orbital angular momentum-based quantum key distribution using real-time adaptive optics with phase unwrapping,” Opt. Exp., vol. 29, no. 20, pp. 31078–31098, Sep. 2021.
P. Li et al., “Generation and self-healing of vector Bessel–Gauss beams with variant state of polarizations upon propagation,” Opt. Exp., vol. 25, no. 5, pp. 5821–5831, Mar. 2017.
E. Otte, I. Nape, C. Rosales-Guzmán, A. Vallés, C. Denz, and A. Forbes, “Recovery of nonseparability in self-healing vector Bessel beams,” Phys. Rev. A, Gen. Phys., vol. 98, no. 5, Nov. 2018, Art. no. 053818.
N. Ahmed et al., “Mode-division-multiplexing of multiple Bessel–Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant free-space optical and millimetre-wave communication links,” Sci. Rep., vol. 6, no. 1, p. 22082, Mar. 2016.
I. Nape et al., “Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states,” Opt. Exp., vol. 26, no. 21, pp. 26946–26960, Oct. 2018.
W. He, S. Guha, J. H. Shapiro, and B. A. Bash, “Performance analysis of free-space quantum key distribution using multiple spatial modes,” Opt. Exp., vol. 29, no. 13, pp. 19305–19318, Jun. 2021.
T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer,” Opt. Lett., vol. 29, no. 23, p. 2797, 2004.
P. Sibson et al., “Chip-based quantum key distribution,” Nature Commun., vol. 8, no. 1, p. 13984, 2017.
H. Semenenko, P. Sibson, M. G. Thompson, and C. Erven, “Interference between independent photonic integrated devices for quantum key distribution,” Opt. Lett., vol. 44, no. 2, pp. 275–278, 2019.
C. Agnesi et al., “Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers,” Opt. Lett., vol. 44, no. 2, p. 271, 2019.
J. M. Arrazola et al., “Quantum circuits with many photons on a programmable nanophotonic chip,” Nature, vol. 591, no. 7848, pp. 54–60, Mar. 2021.
K. Alexander et al., “A manufacturable platform for photonic quantum computing,” 2024, arXiv:2404.17570.
N. Maring et al., “A versatile single-photon-based quantum computing platform,” Nature Photon., vol. 18, no. 6, pp. 603–609, Jun. 2024.
M. Peev, A. Poppe, O. Maurhart, T. Lorünser, T. Länger, and C. Pacher, “The SECOQC quantum key distribution network in Vienna,” New J. Phys., vol. 11, no. 7, Jul. 2009, Art. no. 075001.
M. Sasaki et al., “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Exp., vol. 19, no. 11, p. 10387, May 2011.
D. Stucki et al., “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys., vol. 13, no. 12, Dec. 2011, Art. no. 123001.
Y.-L. Tang et al., “Measurement-device-independent quantum key distribution over untrustful metropolitan network,” Phys. Rev. X, vol. 6, no. 1, Mar. 2016, Art. no. 011024.
T.-Y. Chen et al., “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Exp., vol. 17, no. 8, pp. 6540–6549, Apr. 2009.
F. Xu et al., “Field experiment on a robust hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull., vol. 54, no. 17, pp. 2991–2997, Sep. 2009.
T.-Y. Chen et al., “Metropolitan all-pass and inter-city quantum communication network,” Opt. Exp., vol. 18, no. 26, pp. 27217–27225, Dec. 2010.
D. Huang, P. Huang, H. Li, T. Wang, Y. Zhou, and G. Zeng, “Field demonstration of a continuous-variable quantum key distribution network,” Opt. Lett., vol. 41, no. 15, pp. 3511–3514, Aug. 2016.
C.-Y. Lu, Y. Cao, C.-Z. Peng, and J.-W. Pan, “Micius quantum experiments in space,” Rev. Modern Phys., vol. 94, no. 3, Jul. 2022, Art. no. 035001.
E. Pomarico, B. Sanguinetti, T. Guerreiro, R. Thew, and H. Zbinden, “MHz rate and efficient synchronous heralding of single photons at telecom wavelengths,” Opt. Exp., vol. 20, no. 21, pp. 23846–23855, 2012.
E. Meyer-Scott, C. Silberhorn, and A. Migdall, “Single-photon sources: Approaching the ideal through multiplexing,” Rev. Sci. Instrum., vol. 91, no. 4, Apr. 2020, Art. no. 041101.
F. Kaneda and P. G. Kwiat, “High-efficiency single-photon generation via large-scale active time multiplexing,” Sci. Adv., vol. 5, no. 10, p. 8586, Oct. 2019.
L. Lu, X. Zheng, Y. Lu, S. Zhu, and X.-S. Ma, “Advances in chip-scale quantum photonic technologies,” Adv. Quantum Technol., vol. 4, no. 12, Dec. 2021, Art. no. 2100068.
L. Caspani et al., “Integrated sources of photon quantum states based on nonlinear optics,” Light, Sci. Appl., vol. 6, no. 11, Jun. 2017, Art. no. e17100.
L.-T. Feng, G.-C. Guo, and X.-F. Ren, “Progress on integrated quantum photonic sources with silicon,” Adv. Quantum Technol., vol. 3, no. 2, Feb. 2020, Art. no. 1900058.
C. N. Cohen-Tannoudji, “Nobel lecture: Manipulating atoms with photons,” Rev. Modern Phys., vol. 70, no. 3, pp. 707–719, Jul. 1998.
B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys., vol. 68, no. 5, pp. 1129–1179, 2005.
M. Pompili et al., “Realization of a multinode quantum network of remote solid-state qubits,” Science, vol. 372, no. 6539, pp. 259–264, Apr. 2021.
F. Lenzini, N. Gruhler, N. Walter, and W. H. P. Pernice, “Diamond as a platform for integrated quantum photonics,” Adv. Quantum Technol., vol. 1, no. 3, Dec. 2018, Art. no. 1800061.
M. Neumann et al., “Organic molecules as origin of visible-range single photon emission from hexagonal boron nitride and mica,” ACS Nano, vol. 17, no. 12, pp. 11679–11691, Jun. 2023.
T. Basché, W. E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid,” Phys. Rev. Lett., vol. 69, no. 10, pp. 1516–1519, Sep. 1992.
X.-L. Chu, S. Götzinger, and V. Sandoghdar, “A single molecule as a high-fidelity photon gun for producing intensity-squeezed light,” Nature Photon., vol. 11, no. 1, pp. 58–62, Jan. 2017.
M. Colautti et al., “A 3D polymeric platform for photonic quantum technologies,” Adv. Quantum Technol., vol. 3, no. 7, Jul. 2020, Art. no. 2000004.
M. Rezai, J. Wrachtrup, and I. Gerhardt, “Coherence properties of molecular single photons for quantum networks,” Phys. Rev. X, vol. 8, no. 3, Jul. 2018, Art. no. 031026.
D. Wang et al., “Turning a molecule into a coherent two-level quantum system,” 2018, arXiv:1809.07526.
R. Duquennoy, M. Colautti, R. Emadi, P. Majumder, P. Lombardi, and C. Toninelli, “Real-time two-photon interference from distinct molecules on the same chip,” Optica, vol. 9, no. 7, pp. 731–737, 2022.
C. Zhang, Y.-F. Huang, B.-H. Liu, C.-F. Li, and G.-C. Guo, “Spontaneous parametric down-conversion sources for multiphoton experiments,” Adv. Quantum Technol., vol. 4, no. 5, May 2021, Art. no. 2000132.
S. E. Thomas et al., “Bright polarized single-photon source based on a linear dipole,” 2020, arXiv:2007.04330.
J. C. Loredo et al., “Boson sampling with single-photon Fock states from a bright solid-state source,” Phys. Rev. Lett., vol. 118, no. 13, Mar. 2017, Art. no. 130503.
N. Somaschi et al., “Near-optimal single-photon sources in the solid state,” Nature Photon., vol. 10, no. 5, pp. 340–345, May 2016.
H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett., vol. 117, no. 11, Sep. 2016, Art. no. 110801.
T. Gehring, U. B. Hoff, T. S. Iskhakov, and U. L. Andersen, “Towards an integrated squeezed light source,” Proc. SPIE, vol. 10249, pp. 19–26, Mar. 2017.
Z. Vernon et al., “Scalable squeezed-light source for continuous-variable quantum sampling,” Phys. Rev. Appl., vol. 12, no. 6, Dec. 2019, Art. no. 064024.
Y. Zhang et al., “Squeezed light from a nanophotonic molecule,” Nature Commun., vol. 12, no. 1, p. 2233, Apr. 2021.
R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett., vol. 57, no. 6, pp. 691–694, Aug. 1986.
M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett., vol. 66, no. 2, pp. 153–156, Jan. 1991.
P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, “Quantum solitons in optical fibres,” Nature, vol. 365, no. 6444, pp. 307–313, Sep. 1993.
Y. Fujiwara, H. Nakagome, K. Hirosawa, and F. Kannari, “Generation of squeezed pulses with a Sagnac loop fiber interferometer using a non-soliton femtosecond laser pulse at 800 nm,” Opt. Exp., vol. 17, no. 13, pp. 11197–11204, 2009.
F. A. Mele, F. Salek, V. Giovannetti, and L. Lami, “Quantum communication on the bosonic loss-dephasing channel,” 2024, arXiv:2401.15634.
S. Pirandola, “Limits and security of free-space quantum communications,” Phys. Rev. Res., vol. 3, no. 1, Mar. 2021, Art. no. 013279.
V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo, “Ultimate classical communication rates of quantum optical channels,” Nature Photon., vol. 8, no. 10, pp. 796–800, Oct. 2014.
Z.-L. Xiang, M. Zhang, L. Jiang, and P. Rabl, “Intracity quantum communication via thermal microwave networks,” Phys. Rev. X, vol. 7, no. 1, Mar. 2017, Art. no. 011035.
C. J. Axline et al., “On-demand quantum state transfer and entanglement between remote microwave cavity memories,” Nature Phys., vol. 14, no. 7, pp. 705–710, Jul. 2018.
F. Caruso, V. Giovannetti, and A. S. Holevo, “One-mode bosonic Gaussian channels: A full weak-degradability classification,” New J. Phys., vol. 8, no. 12, p. 310, Dec. 2006.
A. S. Holevo, “One-mode quantum Gaussian channels: Structure and quantum capacity,” Problems Inf. Transmiss., vol. 43, no. 1, pp. 1–11, Mar. 2007.
K. Noh, S. Pirandola, and L. Jiang, “Enhanced energy-constrained quantum communication over bosonic Gaussian channels,” Nature Commun., vol. 11, no. 1, p. 457, Jan. 2020.
A. Gulinatti, F. Ceccarelli, M. Ghioni, and I. Rech, “Custom silicon technology for SPAD-arrays with red-enhanced sensitivity and low timing jitter,” Opt. Exp., vol. 29, no. 3, pp. 4559–4581, 2021.
J. Zhang, M. A. Itzler, H. Zbinden, and J.-W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light, Sci. Appl., vol. 4, no. 5, p. e286, May 2015.
V. B. Verma et al., “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Exp., vol. 23, no. 26, pp. 33792–33801, 2015.
W. Zhang et al., “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys., Mech. Astron., vol. 60, no. 12, pp. 1–10, Dec. 2017.
W. Zhang et al., “Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering,” Phys. Rev. Appl., vol. 12, no. 4, Oct. 2019, Art. no. 044040.
F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, I. Rech, and R. Osellame, “Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications,” Adv. Quantum Technol., vol. 4, no. 2, Feb. 2021, Art. no. 2000102.
J. N. Ullom and D. A. Bennett, “Review of superconducting transition-edge sensors for X-ray and gamma-ray spectroscopy,” Superconductor Sci. Technol., vol. 28, no. 8, Aug. 2015, Art. no. 084003.
M. Kurakado, “Possibility of high resolution detectors using superconducting tunnel junctions,” Nucl. Instrum. Methods Phys. Res., vol. 196, no. 1, pp. 275–277, May 1982.
B. A. Mazin, “Microwave kinetic inductance detectors,” ProQuest Dissertations & Theses, California Inst. Technol., Tech. Rep. 3161146, 2005.
G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, and N. Wada, “Crosstalk dynamics in multi-core fibers,” Opt. Exp., vol. 25, no. 10, pp. 12020–12028, 2017.
D. Cozzolino et al., “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl., vol. 11, no. 6, Jun. 2019, Art. no. 064058.
J.-H. Kim, J.-W. Chae, Y.-C. Jeong, and Y.-H. Kim, “Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network,” APL Photon., vol. 7, no. 1, Jan. 2022, Art. no. 016106.
B. Da Lio et al., “Path-encoded high-dimensional quantum communication over a 2 km multicore fiber,” 2021, arXiv:2103.05992.
J. Wang et al., “Chip-to-chip quantum photonic interconnect by path-polarization interconversion,” Optica, vol. 3, no. 4, pp. 407–413, 2016.
P. Massoud Salehi and J. Proakis, Digital Communications. New York, NY, USA: McGraw-Hill, 2007.
A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, 2005.
H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 57–96, 1st Quart., 2017.
D. A. Lidar and T. A. Brun, Quantum Error Correction. Cambridge, U.K.: Cambridge Univ. Press, 2013.
Z. Cai et al., “Quantum error mitigation,” Rev. Modern Phys., vol. 95, no. 4, 2023, Art. no. 045005.
N. Gisin, N. Linden, S. Massar, and S. Popescu, “Error filtration and entanglement purification for quantum communication,” Phys. Rev. A, Gen. Phys., vol. 72, no. 1, Jul. 2005, Art. no. 012338.
A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C. Branciard, “Communication through coherent control of quantum channels,” Quantum, vol. 4, p. 333, Sep. 2020.
C. Branciard, A. Clément, M. Mhalla, and S. Perdrix, “Coherent control and distinguishability of quantum channels via PBS-diagrams,” 2021, arXiv:2103.02073.
S. Koudia and A. Gharbi, “Superposition of causal orders for quantum discrimination of quantum processes,” Int. J. Quantum Inf., vol. 17, no. 7, Oct. 2019, Art. no. 1950055.
S. Koudia, A. S. Cacciapuoti, and M. Caleffi, “Deterministic generation of multipartite entanglement via causal activation in the quantum internet,” IEEE Access, vol. 11, pp. 73863–73878, 2023.
Y. Aharonov, S. Popescu, J. Tollaksen, and L. Vaidman, “Multiple-time states and multiple-time measurements in quantum mechanics,” Phys. Rev. A, Gen. Phys., vol. 79, no. 5, May 2009, Art. no. 052110.
G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Theoretical framework for quantum networks,” Phys. Rev. A, Gen. Phys., vol. 80, no. 2, Aug. 2009, Art. no. 022339.
T. F. Jordan, A. Shaji, and E. C. G. Sudarshan, “Dynamics of initially entangled open quantum systems,” Phys. Rev. A, Gen. Phys., vol. 70, no. 5, Nov. 2004, Art. no. 052110.
S. Milz and K. Modi, “Quantum stochastic processes and quantum non-Markovian phenomena,” PRX Quantum, vol. 2, no. 3, Jul. 2021, Art. no. 030201.
G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Transforming quantum operations: Quantum supermaps,” EPL Europhysics Lett., vol. 83, no. 3, p. 30004, Aug. 2008.
N. Loizeau and A. Grinbaum, “Channel capacity enhancement with indefinite causal order,” Phys. Rev. A, Gen. Phys., vol. 101, no. 1, Jan. 2020, Art. no. 012340.
S. Koudia, A. S. Cacciapuoti, and M. Caleffi, “From the environment-assisted paradigm to the quantum switch,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6.
G. Rubino et al., “Experimental quantum communication enhancement by superposing trajectories,” 2020, arXiv:2007.05005.
A. S. Solntsev and A. A. Sukhorukov, “Path-entangled photon sources on nonlinear chips,” Rev. Phys., vol. 2, pp. 19–31, Nov. 2017.
N. K. Kundu, S. P. Dash, M. R. McKay, and R. K. Mallik, “MIMO terahertz quantum key distribution,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3345–3349, Oct. 2021.
N. K. Kundu, M. R. McKay, A. Conti, R. K. Mallik, and M. Z. Win, “MIMO terahertz quantum key distribution under restricted eavesdropping,” IEEE Trans. Quantum Eng., vol. 4, pp. 1–15, 2023.
A. Gokul, H. Natarajan, and V. Raghunathan, “Experimental demonstration of coexistence of classical and quantum communication in quantum key distribution link,” in Proc. IEEE Microw., Antennas, Propag. Conf. (MAPCON), Dec. 2023, pp. 1–5.
X. Jing et al., “Coexistence of multiuser entanglement distribution and classical light in optical fiber network with a semiconductor chip,” Chip, vol. 3, no. 2, Jun. 2024, Art. no. 100083.
O. Alia et al., “1.6 Tbps classical channel coexistence with DV-QKD over hollow core nested antiresonant nodeless fibre (HCNANF),” in Proc. Eur. Conf. Opt. Commun. (ECOC), Sep. 2021, pp. 1–4.
R. S. Tessinari et al., “Towards co-existence of 100 Gbps classical channel within a WDM quantum entanglement network,” in Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Jun. 2021, pp. 1–3.
S. Bahrani, M. Razavi, and J. A. Salehi, “Crosstalk reduction in hybrid quantum-classical networks,” Scientia Iranica, vol. 23, no. 6, pp. 2898–2907, Oct. 2016.
S. Bahrani, M. Razavi, and J. A. Salehi, “Wavelength assignment in hybrid quantum-classical networks,” Sci. Rep., vol. 8, no. 1, p. 3456, Feb. 2018.
M. Bathaee, M. Rezai, and J. A. Salehi, “Quantum wavelength-division-multiplexing and multiple-access communication systems and networks: Global and unified approach,” Phys. Rev. A, Gen. Phys., vol. 107, no. 1, Jan. 2023, Art. no. 012613.
T. Manderbach, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett., vol. 98, Apr. 2007, Art. no. 101504.
S.-K. Liao et al., “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nature Photon., vol. 11, no. 8, pp. 509–513, Aug. 2017.
S. Liao et al., “Satellite-to-ground quantum key distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017.
H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, “Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite,” Nature Photon., vol. 11, no. 8, pp. 502–508, Aug. 2017.
D. Dequal et al., “Experimental single-photon exchange along a space link of 7000 km,” Phys. Rev. A, Gen. Phys., vol. 93, no. 1, Jan. 2016, Art. no. 010301.
K. Günthner et al., “Quantum-limited measurements of optical signals from a geostationary satellite,” Optica, vol. 4, no. 6, pp. 611–616, 2017.
D. He, X. N. Feng, and L. F. Wei, “Sensitive enhancement of cat state quantum illumination,” Opt. Exp., vol. 31, no. 11, pp. 17709–17715, 2023.
M. Bergmann and P. van Loock, “Quantum error correction against photon loss using multicomponent cat states,” Phys. Rev. A, Gen. Phys., vol. 94, no. 4, Oct. 2016, Art. no. 042332.
B. Vlastakis et al., “Deterministically encoding quantum information using 100-photon Schrödinger cat states,” Science, vol. 342, no. 6158, pp. 607–610, Nov. 2013.
A. Laghaout et al., “Amplification of realistic schrödinger-cat-state-like states by homodyne heralding,” Phys. Rev. A, Gen. Phys., vol. 87, no. 4, 2013, Art. no. 043826.
M. S. Winnel, J. J. Guanzon, D. Singh, and T. C. Ralph, “Deterministic preparation of optical squeezed cat and Gottesman–Kitaev–Preskill states,” Phys. Rev. Lett., vol. 132, no. 23, Jun. 2024, Art. no. 230602.
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical ‘schrödinger cats’ from photon number states,” Nature, vol. 448, no. 7155, pp. 784–786, 2007.
K. Takase et al., “Generation of optical schrödinger cat states by generalized photon subtraction,” Phys. Rev. A, Gen. Phys., vol. 103, no. 1, 2021, Art. no. 013710.
M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, “Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of ‘Schrödinger cat’ states,” Phys. Rev. A, Gen. Phys., vol. 45, no. 7, pp. 5193–5214, Apr. 1992.
V. Bužek, H. Moya-Cessa, P. Knight, and S. Phoenix, “Schrödinger-cat states in the resonant Jaynes–Cummings model: Collapse and revival of oscillations of the photon-number distributio,” Phys. Rev. A, Gen. Phys., vol. 45, no. 11, p. 8190, 1992.
J.-Q. Liao, J.-F. Huang, and L. Tian, “Generation of macroscopic schrödinger-cat states in qubit-oscillator systems,” Phys. Rev. A, Gen. Phys., vol. 93, no. 3, 2016, Art. no. 033853.
Y.-X. Zeng, J. Shen, M.-S. Ding, and C. Li, “Macroscopic schrödinger cat state swapping in optomechanical system,” Opt. Exp., vol. 28, no. 7, pp. 9587–9602, 2020.
C. Chamberland et al., “Building a fault-tolerant quantum computer using concatenated cat codes,” PRX Quantum, vol. 3, no. 1, Feb. 2022, Art. no. 010329.
D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A, Gen. Phys., vol. 64, no. 1, Jun. 2001, Art. no. 012310.
P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator,” Nature, vol. 584, no. 7821, pp. 368–372, Aug. 2020.
C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home, “Encoding a qubit in a trapped-ion mechanical oscillator,” Nature, vol. 566, no. 7745, pp. 513–517, Feb. 2019.
H. C. P. Kendell, G. Ferranti, and C. A. Weidner, “Deterministic generation of highly squeezed GKP states in ultracold atoms,” APL Quantum, vol. 1, no. 2, Jun. 2024, Art. no. 026109.
K. Takase et al., “Gottesman–Kitaev–Preskill qubit synthesizer for propagating light,” npj Quantum Inf., vol. 9, no. 1, p. 98, Oct. 2023.
H. M. Vasconcelos, L. Sanz, and S. Glancy, “All-optical generation of states for ‘encoding a qubit in an oscillator,”’ Opt. Lett., vol. 35, no. 19, p. 3261, 2010.
D. J. Weigand and B. M. Terhal, “Generating grid states from schrödinger-cat states without postselection,” Phys. Rev. A, Gen. Phys., vol. 97, no. 2, 2018, Art. no. 022341.
M. Eaton, C. González-Arciniegas, R. N. Alexander, N. C. Menicucci, and O. Pfister, “Measurement-based generation and preservation of cat and grid states within a continuous-variable cluster state,” Quantum, vol. 6, p. 769, Sep. 2022.
R. Yanagimoto, T. Onodera, E. Ng, L. G. Wright, P. L. McMahon, and H. Mabuchi, “Engineering a kerr-based deterministic cubic phase gate via Gaussian operations,” Phys. Rev. Lett., vol. 124, no. 24, Jun. 2020, Art. no. 240503.
M. Azari, P. Polakos, and K. P. Seshadreesan, “Quantum switches for Gottesman–Kitaev–Preskill qubit-based all-photonic quantum networks,” 2024, arXiv:2402.02721.
F. Bouchard et al., “Two-photon interference: The Hong–Ou–Mandel effect,” Rep. Prog. Phys., vol. 84, no. 1, Dec. 2020, Art. no. 012402.
Z. Y. Ou, C. K. Hong, and L. Mandel, “Detection of squeezed states by cross correlation,” Phys. Rev. A, Gen. Phys., vol. 36, no. 1, pp. 192–196, Jul. 1987.
J. Hofmann et al., “Heralded entanglement between widely separated atoms,” Science, vol. 337, no. 6090, pp. 72–75, Jul. 2012. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1221856
A. Narla et al., “Robust concurrent remote entanglement between two superconducting qubits,” Phys. Rev. X, vol. 6, no. 3, Sep. 2016, Art. no. 031036.
H. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett., vol. 108, no. 13, Mar. 2012, Art. no. 130503.
T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature, vol. 509, no. 7501, pp. 475–478, May 2014.
M. C. Tichy, “Interference of identical particles from entanglement to boson-sampling,” J. Phys. B, At., vol. 47, no. 10, May 2014, Art. no. 103001.
H. de Guise, S.-H. Tan, I. P. Poulin, and B. C. Sanders, “Coincidence landscapes for three-channel linear optical networks,” Phys. Rev. A, Gen. Phys., vol. 89, no. 6, Jun. 2014, Art. no. 063819.
V. S. Shchesnovich, “Partial indistinguishability theory for multiphoton experiments in multiport devices,” Phys. Rev. A, Gen. Phys., vol. 91, no. 1, Jan. 2015, Art. no. 013844.
A. J. Menssen et al., “Distinguishability and many-particle interference,” Phys. Rev. Lett., vol. 118, no. 15, Apr. 2017, Art. no. 153603.
Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch, and Y. Silberberg, “Quantum walk of two interacting bosons,” Phys. Rev. A, Gen. Phys., vol. 86, no. 1, Jul. 2012, Art. no. 011603.
E. Poem, Y. Gilead, and Y. Silberberg, “Two-photon path-entangled states in multimode waveguides,” Phys. Rev. Lett., vol. 108, no. 15, Apr. 2012, Art. no. 153602.
A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 6, pp. 1673–1684, Nov. 2009.
Y.-H. Luo et al., “Quantum teleportation in high dimensions,” Phys. Rev. Lett., vol. 123, no. 7, Aug. 2019, Art. no. 070505.
M. C. Tichy, F. Mintert, and A. Buchleitner, “Limits to multipartite entanglement generation with bosons and fermions,” Phys. Rev. A, Gen. Phys., vol. 87, no. 2, Feb. 2013, Art. no. 022319.
S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proc. 43rd Annu. ACM Symp. Theory Comput., 2011, pp. 333–342.
W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett., vol. 84, no. 20, pp. 4737–4740, May 2000.
G. L. Roberts, M. Lucamarini, J. F. Dynes, S. J. Savory, Z. L. Yuan, and A. J. Shields, “Modulator-free coherent-one-way quantum key distribution,” Laser Photon. Rev., vol. 11, no. 4, Jul. 2017, Art. no. 1700067.
A. Anshu and S. Arunachalam, “A survey on the complexity of learning quantum states,” Nature Rev. Phys., vol. 6, no. 1, pp. 59–69, Dec. 2023.
F. Anna Mele et al., “Learning quantum states of continuous variable systems,” 2024, arXiv:2405.01431.
J. Eisert et al., “Quantum certification and benchmarking,” Nature Rev. Phys., vol. 2, no. 7, pp. 382–390, Jun. 2020.
D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Phys. Rev. Lett., vol. 105, no. 15, Oct. 2010, Art. no. 150401.
M. Guta, J. Kahn, R. Kueng, and J. A. Tropp, “Fast state tomography with optimal error bounds,” J. Phys. A, Math. Theor., vol. 53, no. 20, Apr. 2020, Art. no. 204001.
A. Kalev, R. L. Kosut, and I. H. Deutsch, “Quantum tomography protocols with positivity are compressed sensing protocols,” Npj Quantum Inf., vol. 1, no. 1, p. 15018, Dec. 2015.
T. Baumgratz, D. Groß, M. Cramer, and M. B. Plenio, “Scalable reconstruction of density matrices,” Phys. Rev. Lett., vol. 111, no. 2, Jul. 2013, Art. no. 020401.
G. Kanter and P. Kumar, “Efficient quantum state tomography,” Nature Photon., vol. 17, no. 11, pp. 925–926, Nov. 2023.
R. Húbener, A. Mari, and J. Eisert, “Wick’s theorem for matrix product states,” Phys. Rev. Lett., vol. 110, no. 4, Jan. 2013, Art. no. 040401.
A. Rocchetto et al., “Experimental learning of quantum states,” Sci. Adv., vol. 5, no. 3, p. 1946, Mar. 2019. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.aau1946
C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, “Robust online Hamiltonian learning,” New J. Phys., vol. 14, no. 10, Oct. 2012, Art. no. 103013.
M. Holzäpfel, T. Baumgratz, M. Cramer, and M. B. Plenio, “Scalable reconstruction of unitary processes and Hamiltonians,” Phys. Rev. A, Gen. Phys., vol. 91, no. 4, Apr. 2015, Art. no. 042129.
I. Maffeis, S. Koudia, A. Gharbi, and M. G. A. Paris, “Process estimation in qubit systems: A quantum decision theory approach,” Quantum Inf. Process., vol. 18, no. 7, pp. 1–19, Jul. 2019.
S. T. Flammia and Y.-K. Liu, “Direct fidelity estimation from few Pauli measurements,” Phys. Rev. Lett., vol. 106, no. 23, Jun. 2011, Art. no. 230501.
D. M. Reich, G. Gualdi, and C. P. Koch, “Optimal strategies for estimating the average fidelity of quantum gates,” Phys. Rev. Lett., vol. 111, no. 20, Nov. 2013, Art. no. 200401.
L. Oleynik, J. U. Rehman, H. Al-Hraishawi, and S. Chatzinotas, “Variational estimation of optimal signal states for quantum channels,” IEEE Trans. Quantum Eng., vol. 5, pp. 1–8, 2024.
G. Cariolaro and G. Pierobon, “Theory of quantum pulse position modulation and related numerical problems,” IEEE Trans. Commun., vol. 58, no. 4, pp. 1213–1222, Apr. 2010.
G. Cariolaro and G. Pierobon, “Performance of quantum data transmission systems in the presence of thermal noise,” IEEE Trans. Commun., vol. 58, no. 2, pp. 623–630, Feb. 2010.
A. Vázquez-Castro and B. Samandarov, “Quantum advantage of binary discrete modulations for space channels,” IEEE Wireless Commun. Lett., vol. 12, no. 5, pp. 903–906, May 2023.
J. Bae and L.-C. Kwek, “Quantum state discrimination and its applications,” J. Phys. A: Math. Theor., vol. 48, no. 8, Jan. 2015, Art. no. 083001.
C. Cui et al., “Quantum receiver enhanced by adaptive learning,” Light, Sci. Appl., vol. 11, no. 1, p. 344, Dec. 2022.
A. Patterson, H. Chen, L. Wossnig, S. Severini, D. Browne, and I. Rungger, “Quantum state discrimination using noisy quantum neural networks,” Phys. Rev. Res., vol. 3, no. 1, Jan. 2021, Art. no. 013063.
M. Bohmann, J. Sperling, A. A. Semenov, and W. Vogel, “Higher-order nonclassical effects in fluctuating-loss channels,” Phys. Rev. A, Gen. Phys., vol. 95, no. 1, Jan. 2017, Art. no. 012324.
V. C. Usenko et al., “Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels,” New J. Phys., vol. 14, no. 9, Sep. 2012, Art. no. 093048.
D. Elser, T. Bartley, B. Heim, C. Wittmann, D. Sych, and G. Leuchs, “Feasibility of free space quantum key distribution with coherent polarization states,” New J. Phys., vol. 11, no. 4, Apr. 2009, Art. no. 045014.
C. Croal et al., “Free-space quantum signatures using heterodyne measurements,” Phys. Rev. Lett., vol. 117, no. 10, Sep. 2016, Art. no. 100503.
J. Yin et al., “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature, vol. 488, no. 7410, pp. 185–188, Aug. 2012.
A. A. Semenov and W. Vogel, “Entanglement transfer through the turbulent atmosphere,” Phys. Rev. A, Gen. Phys., vol. 81, no. 2, Feb. 2010, Art. no. 023835.
M. Bohmann, A. A. Semenov, J. Sperling, and W. Vogel, “Gaussian entanglement in the turbulent atmosphere,” Phys. Rev. A, Gen. Phys., vol. 94, no. 1, Jul. 2016, Art. no. 010302.
M. Oszmaniec, A. Grudka, M. Horodecki, and A. Wójcik, “Creating a superposition of unknown quantum states,” Phys. Rev. Lett., vol. 116, no. 11, Mar. 2016, Art. no. 110403.
S. Bandyopadhyay, “Impossibility of creating a superposition of unknown quantum states,” Phys. Rev. A, Gen. Phys., vol. 102, no. 5, Nov. 2020, Art. no. 050202.
B. W. Walshe, R. N. Alexander, N. C. Menicucci, and B. Q. Baragiola, “Streamlined quantum computing with macronode cluster states,” Phys. Rev. A, Gen. Phys., vol. 104, no. 6, Dec. 2021, Art. no. 062427.
S. Koudia, “The quantum internet: An efficient stabilizer states distribution scheme,” Phys. Scripta, vol. 99, no. 1, Jan. 2024, Art. no. 015115.
S. Koudia, J. ur Rehman, and S. Chatzinotas, “Space-based quantum Internet: Entanglement distribution in time-varying LEO constellations,” 2024, arXiv:2409.17032.
V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quantum domain: A review of recent progress,” Rep. Prog. Phys., vol. 81, no. 7, Jul. 2018, Art. no. 074001.
I. Mahmud and A. Abdelhadi, “Artificial intelligence in quantum communications: A comprehensive survey,” IEEE Access, vol. 13, pp. 121174–121205, 2025.
M. Mafu, “Advances in artificial intelligence and machine learning for quantum communication applications,” IET Quantum Commun., vol. 5, no. 3, pp. 202–231, Sep. 2024.
J. Wallnöfer, A. A. Melnikov, W. Dür, and H. J. Briegel, “Machine learning for long-distance quantum communication,” PRX Quantum, vol. 1, no. 1, Sep. 2020, Art. no. 010301, doi: 10.1103/prxquan-tum.1.010301.
K. S. Elsayed, A. Tahir, and A. Rizk, “On purification strategies for teleportation fidelity for quantum communication applications,” in Proc. EEE Int. Conf. Commun. (ICC), Jun. 2025, pp. 1–6.
J.-Y. Liu, H.-J. Ding, C.-M. Zhang, S.-P. Xie, and Q. Wang, “Practical phase-modulation stabilization in quantum key distribution via machine learning,” Phys. Rev. Appl., vol. 12, no. 1, Jul. 2019, Art. no. 014059.
S. Zhang, J. Liu, G. Zeng, C. Zhang, X. Zhou, and Q. Wang, “Machine learning-assisted measurement device-independent quantum key distribution on reference frame calibration,” Entropy, vol. 23, no. 10, p. 1242, Sep. 2021.
H.-J. Ding, J.-Y. Liu, C.-M. Zhang, and Q. Wang, “Predicting optimal parameters with random forest for quantum key distribution,” Quantum Inf. Process., vol. 19, no. 2, p. 60, Feb. 2020.
F.-Y. Lu et al., “Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 36, no. 3, pp. B92–B98, 2019.
Q. Dong, G. Huang, W. Cui, and R. Jiao, “Optimization parameter prediction-based XGBoost of TF-QKD,” Quantum Inf. Process., vol. 21, no. 7, p. 233, Jun. 2022.
Z.-P. Liu et al., “Automated machine learning for secure key rate in discrete-modulated continuous-variable quantum key distribution,” Opt. Exp., vol. 30, no. 9, pp. 15024–15036, 2022.
Y. Mao et al., “Detecting quantum attacks: A machine learning based defense strategy for practical continuous-variable quantum key distribution,” New J. Phys., vol. 22, no. 8, 2020, Art. no. 083073.
C. Ding, S. Wang, Y. Wang, Z. Wu, J. Sun, and Y. Mao, “Machine-learning-based detection for quantum hacking attacks on continuous-variable quantum-key-distribution systems,” Phys. Rev. A, Gen. Phys., vol. 107, no. 6, Jun. 2023, Art. no. 062422.
Z. Li, H. Zhang, Q. Liao, Y. Mao, and Y. Guo, “Ensemble learning for failure prediction of underwater continuous variable quantum key distribution with discrete modulations,” Phys. Lett. A, vol. 419, Dec. 2021, Art. no. 127694.
Y. Ismail, I. Sinayskiy, and F. Petruccione, “Integrating machine learning techniques in quantum communication to characterize the quantum channel,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 36, no. 3, pp. B116–B121, 2019.
X. Xu, S. C. Benjamin, and X. Yuan, “Variational circuit compiler for quantum error correction,” Phys. Rev. Appl., vol. 15, no. 3, Mar. 2021, Art. no. 034068.
P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, “Error mitigation with Clifford quantum-circuit data,” Quantum, vol. 5, p. 592, Nov. 2021.
C. Cao, C. Zhang, Z. Wu, M. Grassl, and B. Zeng, “Quantum variational learning for quantum error-correcting codes,” Quantum, vol. 6, p. 828, Oct. 2022.