[en] Wind turbines negatively affect bats through mortality, which can be exacerbated by attraction behaviours, and loss of habitat use caused by avoidance behaviours. However, potential mechanisms driving bat responses to wind turbines are still poorly understood. This is especially true of red aviation lighting, designed to prevent aircraft collisions and implemented in many countries, that could be perceived by bats from a long distance and lead to a response at a large spatial scale. We assessed the role of wind turbine red aviation lighting in the behavioural responses (attraction and avoidance) of bats. To this end, we acoustically quantified the activity of three functional bat guilds (long-, medium- and short-range echolocators) at three wind farms using a triplet sampling design: recordings were conducted simultaneously at (i) wind turbines illuminated throughout the night, (ii) wind turbines equipped with the aircraft detection lighting system (ADLS) and illuminated an average of 12% of the night and (iii) control sites without nearby wind turbine. Thirteen and nine triplets were sampled at wooded edges ~250 m from the nearest wind turbine and in open habitats at the base of the turbine, respectively, during two consecutive nights in June 2021 in the Uckermark district (north-east Germany). We found that acoustic activity was higher overall at sites near wind turbines illuminated throughout the night than at control sites for all functional guilds and both at wooded edges and in open habitats, indicating local attraction behaviours towards wind turbines that might increase collision risks. Activity at sites near wind turbines with ADLS was lower overall than at sites near wind turbines illuminated throughout the night, and similar to control sites, suggesting that part-night lighting could contribute to reducing bat attraction towards wind turbines. Synthesis and applications. This study provides empirical evidence that attraction behaviour of bats towards wind turbines is driven, at least partially, by red aviation lighting. We also demonstrate that smart lighting of wind turbines, such as the ADLS, could cost-effectively help mitigate disruption of bat habitat use and the associated collision risks. Implementing adaptive lighting strategies could therefore represent a practical step towards balancing wind energy development with bat conservation.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Larnoy, Gaëlle ✱; Auddicé Biodiversité—ZAC du Chevalement, Roost-Warendin, France
Verniest, Fabien ✱; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Station de Biologie Marine, Concarneau Cedex, France
Kerbiriou, Christian ; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Station de Biologie Marine, Concarneau Cedex, France
Le Viol, Isabelle ; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Station de Biologie Marine, Concarneau Cedex, France
Lefebvre, Pauline; Auddicé Biodiversité—ZAC du Chevalement, Roost-Warendin, France
Valet, Nicolas; Auddicé Biodiversité—ZAC du Chevalement, Roost-Warendin, France
BARRE, Kevin ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Station de Biologie Marine, Concarneau Cedex, France
Leroux, Camille ✱; Auddicé Biodiversité—ZAC du Chevalement, Roost-Warendin, France ; Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Station de Biologie Marine, Concarneau Cedex, France
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Minimizing aviation lighting duration reduces bat attraction to wind turbines
Agence de la transition écologique Association Nationale de la Recherche et de la Technologie
Funding text :
We thank two anonymous reviewers for comments that significantly improved the quality of the manuscript. We are grateful to C. Herminet for her contribution to the study design and data collection. We also thank E. Tr\u00E9buchet and M. Cl\u00E9ment\u2010Lacroix for the manual verification of automatic identifications, Q. Grisouard for helping with the figures and P. Bach and C. Roemer for helping with the German version of the abstract. We are grateful to Dark Sky, ENERTRAG SE, ENERTRAG Systemtechnik, the Kompetenzzentrum Naturschutz und Energiewende, the Landesamt f\u00FCr Umwelt Brandenburg, the Ministerium f\u00FCr Infrastruktur und Landesplanung, the Uckermark district, M. Fritze, Y. Gager and C. Voigt for their invaluable help in the search for information on the operation and characteristics of wind turbines. This work was supported by the Agence de la transition \u00E9cologique (ADEME), the Association Nationale de la Recherche et de la Technologie (Grant No. 2019/1566) and Auddic\u00E9 biodiversit\u00E9.We thank two anonymous reviewers for comments that significantly improved the quality of the manuscript. We are grateful to C. Herminet for her contribution to the study design and data collection. We also thank E. Tr\u00E9buchet and M. Cl\u00E9ment-Lacroix for the manual verification of automatic identifications, Q. Grisouard for helping with the figures and P. Bach and C. Roemer for helping with the German version of the abstract. We are grateful to Dark Sky, ENERTRAG SE, ENERTRAG Systemtechnik, the Kompetenzzentrum Naturschutz und Energiewende, the Landesamt f\u00FCr Umwelt Brandenburg, the Ministerium f\u00FCr Infrastruktur und Landesplanung, the Uckermark district, M. Fritze, Y. Gager and C. Voigt for their invaluable help in the search for information on the operation and characteristics of wind turbines. This work was supported by the Agence de la transition \u00E9cologique (ADEME), the Association Nationale de la Recherche et de la Technologie (Grant No. 2019/1566) and Auddic\u00E9 biodiversit\u00E9.
Adams, E. M., Gulka, J., & Williams, K. A. (2021). A review of the effectiveness of operational curtailment for reducing bat fatalities at terrestrial wind farms in North America. PLoS One, 16(11), e0256382. https://doi.org/10.1371/journal.pone.0256382
Arnett, E. B., Brown, W. K., Erickson, W. P., Fiedler, J. K., Hamilton, B. L., Henry, T. H., & Tankersley, R. D. (2008). Patterns of bat fatalities at wind energy facilities in North America. The Journal of Wildlife Management, 72(1), 61–78.
Baerwald, E. F., & Barclay, R. M. R. (2011). Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. The Journal of Wildlife Management, 75(5), 1103–1114. https://doi.org/10.1002/jwmg.147
Barré, K., Froidevaux, J. S. P., Leroux, C., Mariton, L., Fritze, M., Kerbiriou, C., & Roemer, C. (2022). Over a decade of failure to implement UNEP/EUROBATS guidelines in wind energy planning: A call for action. Conservation Science and Practice, 4(11), e12805. https://doi.org/10.1111/csp2.12805
Barré, K., Kerbiriou, C., Ing, R.-K., Bas, Y., Azam, C., Le Viol, I., & Spoelstra, K. (2021). Bats seek refuge in cluttered environment when exposed to white and red lights at night. Movement Ecology, 9(1), 3. https://doi.org/10.1186/s40462-020-00238-2
Barré, K., Le Viol, I., Bas, Y., Julliard, R., & Kerbiriou, C. (2018). Estimating habitat loss due to wind turbine avoidance by bats: Implications for European siting guidance. Biological Conservation, 226, 205–214. https://doi.org/10.1016/j.biocon.2018.07.011
Barré, K., Le Viol, I., Julliard, R., Pauwels, J., Newson, S. E., Julien, J.-F., & Bas, Y. (2019). Accounting for automated identification errors in acoustic surveys. Methods in Ecology and Evolution, 10(8), 1171–1188. https://doi.org/10.1111/2041-210X.13198
Barré, K., Thomas, I., Le Viol, I., Spoelstra, K., & Kerbiriou, C. (2023). Manipulating spectra of artificial light affects movement patterns of bats along ecological corridors. Animal Conservation, 26(6), 865–875. https://doi.org/10.1111/acv.12875
Bas, Y., Bas, D., & Julien, J.-F. (2017). Tadarida: A toolbox for animal detection on acoustic recordings. Journal of Open Research Software, 5(1), 6. https://doi.org/10.5334/jors.154
Bennett, V. J., & Hale, A. M. (2014). Red aviation lights on wind turbines do not increase bat–turbine collisions. Animal Conservation, 17(4), 354–358. https://doi.org/10.1111/acv.12102
Brooks, M. E., Kristensen, K., Benthem, K., J., van Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378. https://doi.org/10.32614/RJ-2017-066
Callahan, P. S. (1965). Far infra-red emission and detection by night-flying moths. Nature, 206(4989), 1172–1173. https://doi.org/10.1038/2061172a0
Cryan, P. M. (2008). Mating behavior as a possible cause of bat fatalities at wind turbines. The Journal of Wildlife Management, 72(3), 845–849. https://doi.org/10.2193/2007-371
Cryan, P. M., & Barclay, R. M. R. (2009). Causes of bat fatalities at wind turbines: Hypotheses and predictions. Journal of Mammalogy, 90(6), 1330–1340. https://doi.org/10.1644/09-MAMM-S-076R1.1
Cryan, P. M., Gorresen, P. M., Hein, C. D., Schirmacher, M. R., Diehl, R. H., Huso, M. M., Hayman, D. T., Fricker, P. D., Bonaccorso, F. J., Johnson, D. H., Heist, K., & Dalton, D. C. (2014). Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences of the United States of America, 111(42), 15126–15131. https://doi.org/10.1073/pnas.1406672111
Denzinger, A., & Schnitzler, H.-U. (2013). Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4, 164. https://doi.org/10.3389/fphys.2013.00164
Duriez, O., Pilard, P., Saulnier, N., Boudarel, P., & Besnard, A. (2023). Windfarm collisions in medium-sized raptors: Even increasing populations can suffer strong demographic impacts. Animal Conservation, 26(2), 264–275. https://doi.org/10.1111/acv.12818
Ellerbrok, J. S., Delius, A., Peter, F., Farwig, N., & Voigt, C. C. (2022). Activity of forest specialist bats decreases towards wind turbines at forest sites. Journal of Applied Ecology, 59(10), 2497–2506. https://doi.org/10.1111/1365-2664.14249
Ellerbrok, J. S., Farwig, N., Peter, F., Rehling, F., & Voigt, C. C. (2023). Forest gaps around wind turbines attract bat species with high collision risk. Biological Conservation, 288, 110347. https://doi.org/10.1016/j.biocon.2023.110347
Ellerbrok, J. S., Farwig, N., Peter, F., & Voigt, C. C. (2024). Forest bat activity declines with increasing wind speed in proximity of operating wind turbines. Global Ecology and Conservation, 49, e02782. https://doi.org/10.1016/j.gecco.2023.e02782
Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 222(594–604), 309–368. https://doi.org/10.1098/rsta.1922.0009
Frey-Ehrenbold, A., Bontadina, F., Arlettaz, R., & Obrist, M. K. (2013). Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. Journal of Applied Ecology, 50(1), 252–261. https://doi.org/10.1111/1365-2664.12034
Frick, W. F., Baerwald, E. F., Pollock, J. F., Barclay, R. M. R., Szymanski, J. A., Weller, T. J., & McGuire, L. P. (2017). Fatalities at wind turbines may threaten population viability of a migratory bat. Biological Conservation, 209, 172–177. https://doi.org/10.1016/j.biocon.2017.02.023
Gaultier, S. P., Lilley, T. M., Vesterinen, E. J., & Brommer, J. E. (2023). The presence of wind turbines repels bats in boreal forests. Landscape and Urban Planning, 231, 104636. https://doi.org/10.1016/j.landurbplan.2022.104636
Guest, E. E., Stamps, B. F., Durish, N. D., Hale, A. M., Hein, C. D., Morton, B. P., & Fritts, S. R. (2022). An updated review of hypotheses regarding bat attraction to wind turbines. Animals, 12(3), 343. https://doi.org/10.3390/ani12030343
Hartig, F. (2022). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.5. https://CRAN.R-project.org/package=DHARMa
Horn, J. W., Arnett, E. B., & Kunz, T. H. (2008). Behavioral responses of bats to operating wind turbines. The Journal of Wildlife Management, 72(1), 123–132. https://doi.org/10.2193/2006-465
Hutchinson, M., & Zhao, F. (2023). Global wind report 2023. Global wind energy council, 3.
IPCC. (2022). Climate change 2022: Mitigation of climate change. In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, & J. Malley (Eds.), Contribution of working group III to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009157926.006
IRENA. (2022). Renewable energy statistics 2022. The International Renewable Energy Agency.
Jonasson, K. A., Adams, A. M., Brokaw, A. F., Whitby, M. D., O'Mara, M. T., & Frick, W. F. (2024). A multisensory approach to understanding bat responses to wind energy developments. Mammal Review, 54(3), 229–242. https://doi.org/10.1111/mam.12340
Kunz, T. H., Arnett, E. B., Erickson, W. P., Hoar, A. R., Johnson, G. D., Larkin, R. P., & Tuttle, M. D. (2007). Ecological impacts of wind energy development on bats: Questions, research needs, and hypotheses. Frontiers in Ecology and the Environment, 5(6), 315–324. https://doi.org/10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2
Kuvlesky, W. P., Brennan, L. A., Morrison, M. L., Boydston, K. K., Ballard, B. M., & Bryant, F. C. (2007). Wind energy development and wildlife conservation: Challenges and opportunities. The Journal of Wildlife Management, 71(8), 2487–2498.
Larnoy, G., Verniest, F., Kerbiriou, C., Le Viol, I., Lefebvre, P., Valet, N., Barré, K., & Leroux, C. (2025). Dataset for “Minimizing aviation lighting duration reduces bat attraction to wind turbines” [Data set]. Zenodo. https://doi.org/10.5281/zenodo.17454526
Leroux, C., Barré, K., Valet, N., Kerbiriou, C., & Le Viol, I. (2024). Distribution of common pipistrelle (Pipistrellus pipistrellus) activity is altered by airflow disruption generated by wind turbines. PLoS One, 19(5), e0303368. https://doi.org/10.1371/journal.pone.0303368
Leroux, C., Kerbiriou, C., Le Viol, I., Valet, N., & Barré, K. (2022). Distance to hedgerows drives local repulsion and attraction of wind turbines on bats: Implications for spatial siting. Journal of Applied Ecology, 59(8), 2142–2153. https://doi.org/10.1111/1365-2664.14227
Leroux, C., Le Viol, I., Valet, N., Kerbiriou, C., & Barré, K. (2023). Disentangling mechanisms responsible for wind energy effects on European bats. Journal of Environmental Management, 346, 118987. https://doi.org/10.1016/j.jenvman.2023.118987
McKay, R. A., Johns, S. E., Bischof, R., Matthews, F., Van Der Kooij, J., Yoh, N., & Eldegard, K. (2024). Wind energy development can lead to guild-specific habitat loss in boreal forest bats. Wildlife Biology, 2024, e01168. https://doi.org/10.1002/wlb3.01168
Millon, L., Julien, J.-F., Julliard, R., & Kerbiriou, C. (2015). Bat activity in intensively farmed landscapes with wind turbines and offset measures. Ecological Engineering, 75, 250–257. https://doi.org/10.1016/j.ecoleng.2014.11.050
Minderman, J., Gillis, M., Daly, H., & Park, K. (2017). Landscape-scale effects of single- and multiple small wind turbines on bat activity. Animal Conservation, 20, 455–462. https://doi.org/10.1111/acv.12331
O'Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K., & Streicker, D. G. (2016). Multiple mortality events in bats: A global review. Mammal Review, 46(3), 175–190. https://doi.org/10.1111/mam.12064
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rebke, M., Dierschke, V., Weiner, C. N., Aumüller, R., Hill, K., & Hill, R. (2019). Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions. Biological Conservation, 233, 220–227. https://doi.org/10.1016/j.biocon.2019.02.029
Reusch, C., Lozar, M., Kramer-Schadt, S., & Voigt, C. C. (2022). Coastal onshore wind turbines lead to habitat loss for bats in northern Germany. Journal of Environmental Management, 310, 114715. https://doi.org/10.1016/j.jenvman.2022.114715
Richardson, S. M., Lintott, P. R., Hosken, D. J., Economou, T., & Mathews, F. (2021). Peaks in bat activity at turbines and the implications for mitigating the impact of wind energy developments on bats. Scientific Reports, 11(1), 3636. https://doi.org/10.1038/s41598-021-82014-9
Rodrigues, L., Bach, L., Dubourg-Savage, M., Karapandza, B., Kovac, D., Kervyn, T., Dekker, J., Kepel, A., Bach, P., Collins, J., Harbusch, C., Park, K., Micevski, B., & Minderman, J. (2015). Guidelines for consideration of bats in wind farm projects - revision 2014. EUROBATS Publication Series No. 6 (English Version).
Roemer, C., Bas, Y., Disca, T., & Coulon, A. (2019). Influence of landscape and time of year on bat-wind turbines collision risks. Landscape Ecology, 34(12), 2869–2881. https://doi.org/10.1007/s10980-019-00927-3
Rydell, J., Bach, L., Dubourg-Savage, M.-J., Green, M., Rodrigues, L., & Hedenström, A. (2010). Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica, 12, 261–274. https://doi.org/10.3161/150811010X537846
Saidur, R., Rahim, N. A., Islam, M. R., & Solangi, K. H. (2011). Environmental impact of wind energy. Renewable and Sustainable Energy Reviews, 15(5), 2423–2430. https://doi.org/10.1016/j.rser.2011.02.024
Scholz, C., Klein, H., & Voigt, C. C. (2025). Wind turbines displace bats from drinking sites. Biological Conservation, 302, 110968. https://doi.org/10.1016/j.biocon.2025.110968
Schuster, E., Bulling, L., & Köppel, J. (2015). Consolidating the state of knowledge: A synoptical review of wind energy's wildlife effects. Environmental Management, 56(2), 300–331. https://doi.org/10.1007/s00267-015-0501-5
Sotillo, A., Le Viol, I., Barré, K., Bas, Y., & Kerbiriou, C. (2024). Context-dependent effects of wind turbines on bats in rural landscapes. Biological Conservation, 295, 110647. https://doi.org/10.1016/j.biocon.2024.110647
Spoelstra, K., van Grunsven, R. H. A., Ramakers, J. J. C., Ferguson, K. B., Raap, T., Donners, M., & Visser, M. E. (2017). Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proceedings of the Royal Society B: Biological Sciences, 284(1855), 20170075. https://doi.org/10.1098/rspb.2017.0075
Stone, E. L., Harris, S., & Jones, G. (2015). Impacts of artificial lighting on bats: A review of challenges and solutions. Mammalian Biology, 80(3), 213–219. https://doi.org/10.1016/j.mambio.2015.02.004
Takács, S., Bottomley, H., Andreller, I., Zaradnik, T., Schwarz, J., Bennett, R., Strong, W., & Gries, G. (2009). Infrared radiation from hot cones on cool conifers attracts seed-feeding insects. Proceedings of the Royal Society B: Biological Sciences, 276(1657), 649–655. https://doi.org/10.1098/rspb.2008.0742
Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99. https://doi.org/10.2307/3001913
Voigt, C. C. (2021). Insect fatalities at wind turbines as biodiversity sinks. Conservation Science and Practice, 3(5), e366. https://doi.org/10.1111/csp2.366
Voigt, C. C., Dekker, J., Fritze, M., Gazaryan, S., Hölker, F., Jones, G., & Zagmajster, M. (2021). The impact of light pollution on bats varies according to foraging guild and habitat context. Bioscience, 71(10), 1103–1109. https://doi.org/10.1093/biosci/biab087
Voigt, C. C., Rehnig, K., Lindecke, O., & Pētersons, G. (2018). Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants. Ecology and Evolution, 8(18), 9353–9361. https://doi.org/10.1002/ece3.4400
Voigt, C. C., Straka, T. M., & Fritze, M. (2019). Producing wind energy at the cost of biodiversity: A stakeholder view on a green-green dilemma. Journal of Renewable and Sustainable Energy, 11(6), 063303. https://doi.org/10.1063/1.5118784
Wang, S., & Wang, S. (2015). Impacts of wind energy on environment: A review. Renewable and Sustainable Energy Reviews, 49, 437–443. https://doi.org/10.1016/j.rser.2015.04.137
Whitby, M. D., O'Mara, M. T., Hein, C. D., Huso, M., & Frick, W. F. (2024). A decade of curtailment studies demonstrates a consistent and effective strategy to reduce bat fatalities at wind turbines in North America. Ecological Solutions and Evidence, 5(3), e12371. https://doi.org/10.1002/2688-8319.12371
Wickramasinghe, L. P., Harris, S., Jones, G., & Vaughan, N. (2003). Bat activity and species richness on organic and conventional farms: Impact of agricultural intensification. Journal of Applied Ecology, 40(6), 984–993. https://doi.org/10.1111/j.1365-2664.2003.00856.x
Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems: Data exploration. Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x