data spaces; local digital twins (LDTs); mobility observatories; open data; real-time data; Advanced mobilities; Case-studies; Data proliferation; Data space; Dynamic mobility; Local digital twin; Luxembourg; Mobility observatory; Real-time data; Urban mobility; Artificial Intelligence; Modeling and Simulation; Transportation; Control and Optimization; Computer Science Applications; Information Systems and Management
Abstract :
[en] We address the significant opportunities and inherent challenges in developing advanced mobility observatories, critical tools for managing the profound transformation of urban mobility underway, driven by data proliferation, advances in AI and digital twin technologies. To inform this discussion, we first critically review the landscape of data collection methods - from traditional sources such as travel surveys and traffic counters to emerging streams such as mobile phone and social media data - and highlight the benefits and limitations of each approach. Existing mobility dashboards and observatories are examined to understand their current utility and limitations. Building on this analysis, we present a dynamic observatory architecture proposed for Luxembourg that uses automated Extract, Load, Transform (ELT) pipelines and integrates various open data sources. This experience highlights significant data quality challenges and necessitates mitigation strategies, which are discussed. Crucially, our proposed architecture and the Luxembourg case study highlight the essential role and need for the development of interoperable Local Digital Twins (LDTs). We conclude by advocating that to realise the full potential of next-generation mobility observatories, integrated data spaces and sophisticated AI-driven tools must be adopted for future urban mobility management.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Ferrero, Francesco; Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
CASTIGNANI, German ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > PI Engel ; Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
CONNORS, Richard ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Francesco VITI ; Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
VITI, Francesco ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
External co-authors :
no
Language :
English
Title :
Enabling Dynamic Mobility Observatories Through Open Data, AI, and Digital Twin Technologies: A Case Study of Luxembourg
Publication date :
2025
Event name :
2025 9th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)
Event place :
Luxembourg, Lux
Event date :
08-09-2025 => 10-09-2025
Audience :
International
Main work title :
2025 9th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2025
Publisher :
Institute of Electrical and Electronics Engineers Inc.
P. R. Stopher and S. P. Greaves, 'Household travel surveys: Where are we going?', Transp. Res. Part Policy Pract., vol. 41, no. 5, pp. 367-381, Jun. 2007, doi: 10.1016/j.tra.2006.09.005.
I. Keseru, N. Wuytens, and C. Macharis, 'Citizen observatory for mobility: a conceptual framework', Transp. Rev., vol. 39, no. 4, pp. 485-510, Jul. 2019, doi: 10.1080/01441647.2018.1536089.
Vitello, Piergiorgio, 'Crowdsourced Data for Mobility Analysis', University of Luxembourg, 2023.
C. Anda, S. A. Ordonez Medina, and K. W. Axhausen, 'Synthesising digital twin travellers: Individual travel demand from aggregated mobile phone data', Transp. Res. Part C Emerg. Technol., vol. 128, p. 103118, Jul. 2021, doi: 10.1016/j.trc.2021.103118.
M. Mokbel et al., 'Towards Mobility Data Science (Vision Paper)', Mar. 07, 2024, arXiv: arXiv:2307.05717. Accessed: Aug. 23, 2024. [Online]. Available: http://arxiv.org/abs/2307.05717
J. Zhao et al., 'GLTC: A Metro Passenger Identification Method Across AFC Data and Sparse WiFi Data', IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 18337-18351, Oct. 2022, doi: 10.1109/TITS.2022.3171332.
V. Kostakos, T. Camacho, and C. Mantero, 'Towards proximity-based passenger sensing on public transport buses', Pers. Ubiquitous Comput., vol. 17, no. 8, pp. 1807-1816, Dec. 2013, doi: 10.1007/s00779-013-0652-4.
M. Li, R. Westerholt, H. Fan, and A. Zipf, 'Assessing spatiotemporal predictability of LBSN: a case study of three Foursquare datasets', GeoInformatica, vol. 22, no. 3, pp. 541-561, Jul. 2018, doi: 10.1007/s10707-016-0279-5.
M. F. Mokbel et al., 'MNTG: 13th International Symposium on Spatial and Temporal Databases, SSTD 2013', Adv. Spat. Temporal Databases - 13th Int. Symp. SSTD 2013 Proc., pp. 38-55, 2013, doi: 10.1007/978-3-642-40235-7_3.
R. Ceccato, G. Gecchele, R. Rossi, and M. Gastaldi, 'Cost-effectiveness analysis of Origin-Destination matrices estimation using Floating Car Data. Experimental results from two real cases', Transp. Res. Procedia, vol. 62, pp. 541-548, 2022, doi: 10.1016/j.trpro.2022.02.067.
Md. S. Iqbal, C. F. Choudhury, P. Wang, and M. C. González, 'Development of origin-destination matrices using mobile phone call data', Transp. Res. Part C Emerg. Technol., vol. 40, pp. 63-74, Mar. 2014, doi: 10.1016/j.trc.2014.01.002.
G. Harrison, S. M. Grant-Muller, and F. C. Hodgson, 'New and emerging data forms in transportation planning and policy: Opportunities and challenges for "Track and Trace" data', Transp. Res. Part C Emerg. Technol., vol. 117, p. 102672, Aug. 2020, doi: 10.1016/j.trc.2020.102672.
E. Chaniotakis, C. Antoniou, and F. Pereira, 'Mapping Social Media for Transportation Studies', IEEE Intell. Syst., vol. 31, no. 6, pp. 64-70, Nov. 2016, doi: 10.1109/MIS.2016.98.
L. Zhang, L. Zhao, and D. Pfoser, 'Factorized deep generative models for end-to-end trajectory generation with spatiotemporal validity constraints', in Proceedings of the 30th International Conference on Advances in Geographic Information Systems, in SIGSPATIAL '22. New York, NY, USA: Association for Computing Machinery, Nov. 2022, pp. 1-12. doi: 10.1145/3557915.3560994.
E. I. Bank, 'EIB Technical Note on Data Sharing in Transport', Dec. 2021, Accessed: Feb. 21, 2025. [Online]. Available: https://www.eib.org/en/publications/eib-technical-note-on-data-sharing-in-transport
T. for L. | E. J. Matters, 'Road safety data', Transport for London. Accessed: Feb. 02, 2025. [Online]. Available: https://www.tfl.gov.uk/corporate/publications-and-reports/road-safety
'Shared Bike Dashboard'. Accessed: Feb. 02, 2025. [Online]. Available: https://bikedashboard.gitlab.io/front/
'Vianova | Transforming Mobility Data for Safer, Sustainable Cities'. Accessed: Feb. 02, 2025. [Online]. Available: https://www.vianova.io/
C. D. 't B. 10 7122 T. Aalten, 'Event Traffic Dashboard', TripService. Accessed: Feb. 02, 2025. [Online]. Available: https://www.tripservice.nl/en/services/eventsupport/event-traffic-dashboard/
'Observatoire digital de la mobilité'. Accessed: Feb. 21, 2025. [Online]. Available: https://odm.public.lu/
W. Daamen, A. van Binsbergen, B. van Arem, and S. P. Hoogendoorn, 'Urban Mobility Observatory', in Traffic and Granular Flow 2019, I. Zuriguel, A. Garcimartin, and R. Cruz, Eds., Cham: Springer International Publishing, 2020, pp. 457-463. doi: 10.1007/978-3-030-55973-1_56.
M. Sakr and G. Merten, 'Brussels Mobility Twin', in Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems, in SIGSPATIAL '23. New York, NY, USA: Association for Computing Machinery, Dec. 2023, pp. 1-4. doi: 10.1145/3589132.3625634.
H. Yeon, T. Eom, K. Jang, and J. Yeo, 'DTUMOS, digital twin for large-scale urban mobility operating system', Sci. Rep., vol. 13, no. 1, Art. no. 1, Mar. 2023, doi: 10.1038/s41598-023-32326-9.
B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi, 'Crowd sensing of traffic anomalies based on human mobility and social media', in Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in SIGSPATIAL'13. New York, NY, USA: Association for Computing Machinery, Nov. 2013, pp. 344-353. doi: 10.1145/2525314.2525343.
A. M. Nagy and V. Simon, 'Survey on traffic prediction in smart cities', Pervasive Mob. Comput., vol. 50, pp. 148-163, Oct. 2018, doi: 10.1016/j.pmcj.2018.07.004.
H. Yuan and G. Li, 'A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation', Data Sci. Eng., vol. 6, no. 1, pp. 63-85, Mar. 2021, doi: 10.1007/s41019-020-00151-z.
L. Chen, S. Shang, C. S. Jensen, B. Yao, Z. Zhang, and L. Shao, 'Effective and Efficient Reuse of Past Travel Behavior for Route Recommendation', in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD '19. New York, NY, USA: Association for Computing Machinery, Jul. 2019, pp. 488-498. doi: 10.1145/3292500.3330835.
'EcoMark 2.0: empowering eco-routing with vehicular environmental models and actual vehicle fuel consumption data | GeoInformatica'. Accessed: Feb. 21, 2025. [Online]. Available: https://link.springer.com/article/10.1007/s10707-014-0221-7
D. Tomaras, V. Kalogeraki, T. Liebig, and D. Gunopulos, 'Crowd-Based Ecofriendly Trip Planning', in 2018 19th IEEE International Conference on Mobile Data Management (MDM), Jun. 2018, pp. 24-33. doi: 10.1109/MDM.2018.00018.
G. Jossé, K. A. Schmid, A. Züfle, G. Skoumas, M. Schubert, and D. Pfoser, 'Tourismo: A User-Preference Tourist Trip Search Engine', in Advances in Spatial and Temporal Databases, C. Claramunt, M. Schneider, R. C.-W. Wong, L. Xiong, W.-K. Loh, C. Shahabi, and K.-J. Li, Eds., Cham: Springer International Publishing, 2015, pp. 514-519. doi: 10.1007/978-3-319-22363-6_32.
P. Nikitopoulos, A.-I. Paraskevopoulos, C. Doulkeridis, N. Pelekis, and Y. Theodoridis, 'Hot Spot Analysis over Big Trajectory Data', in 2018 IEEE International Conference on Big Data (Big Data), Dec. 2018, pp. 761-770. doi: 10.1109/BigData.2018.8622376.
M. Musleh, S. Abbar, R. Stanojevic, and M. Mokbel, 'QARTA: an ML-based system for accurate map services', Proc VLDB Endow, vol. 14, no. 11, pp. 2273-2282, Jul. 2021, doi: 10.14778/3476249.3476279.
J. Macfarlane and M. Stroila, 'Addressing the uncertainties in autonomous driving', SIGSPATIAL Spec., vol. 8, no. 2, pp. 35-40, Dec. 2016, doi: 10.1145/3024087.3024092.
H. Wang, Y.-H. Kuo, D. Kifer, and Z. Li, 'A simple baseline for travel time estimation using large-scale trip data', in Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in SIGSPACIAL '16. New York, NY, USA: Association for Computing Machinery, Oct. 2016, pp. 1-4. doi: 10.1145/2996913.2996943.
R. Truong, O. Gkountouna, D. Pfoser, and A. Züfle, 'Towards a Better Understanding of Public Transportation Traffic: A Case Study of the Washington, DC Metro', Urban Sci., vol. 2, no. 3, p. 65, Aug. 2018, doi: 10.3390/urbansci2030065.
S. Moosavi, M. H. Samavatian, S. Parthasarathy, R. Teodorescu, and R. Ramnath, 'Accident Risk Prediction based on Heterogeneous Sparse Data: New Dataset and Insights', in Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in SIGSPATIAL '19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 33-42. doi: 10.1145/3347146.3359078.
H. Maeda, Y. Sekimoto, and T. Seto, 'Lightweight road manager: smartphone-based automatic determination of road damage status by deep neural network', in Proceedings of the 5th ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, in MobiGIS '16. New York, NY, USA: Association for Computing Machinery, Oct. 2016, pp. 37-45. doi: 10.1145/3004725.3004729.
S. Shang, B. Yuan, K. Deng, K. Xie, and X. Zhou, 'Finding the most accessible locations: reverse path nearest neighbor query in road networks', in Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in GIS '11. New York, NY, USA: Association for Computing Machinery, Nov. 2011, pp. 181-190. doi: 10.1145/2093973.2093999.
F. D. Salim et al., 'Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey', Build. Environ., vol. 183, p. 106964, Oct. 2020, doi: 10.1016/j.buildenv.2020.106964.
B. Hong, B. J. Bonczak, A. Gupta, and C. E. Kontokosta, 'Measuring inequality in community resilience to natural disasters using large-scale mobility data', Nat. Commun., vol. 12, no. 1, p. 1870, Mar. 2021, doi: 10.1038/s41467-021-22160-w.
Z. Lin et al., 'HealthWalks: Sensing Fine-grained Individual Health Condition via Mobility Data', Proc ACM Interact Mob Wearable Ubiquitous Technol, vol. 4, no. 4, p. 138:1-138:26, Dec. 2020, doi: 10.1145/3432229.
M. F. Mokbel, L. Xiong, and D. Zeinalipour-Yazti, 'Introduction to the Special Issue on Contact Tracing', ACM Trans Spat. Algorithms Syst, vol. 8, no. 2, p. 8:1-8:2, Apr. 2022, doi: 10.1145/3514137.
K. Fu, Z. Chen, and C.-T. Lu, 'StreetNet: preference learning with convolutional neural network on urban crime perception', in Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in SIGSPATIAL '18. New York, NY, USA: Association for Computing Machinery, Nov. 2018, pp. 269-278. doi: 10.1145/3274895.3274975.
S. Shah, F. Bao, C.-T. Lu, and I.-R. Chen, 'CROWDSAFE: crowd sourcing of crime incidents and safe routing on mobile devices', in Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in GIS '11. New York, NY, USA: Association for Computing Machinery, Nov. 2011, pp. 521-524. doi: 10.1145/2093973.2094064.
'Home - Portail Open Data'. Accessed: Mar. 16, 2025. [Online]. Available: https://data.public.lu/en/
Z. Fan, R. Jiang, and R. Shibasaki, 'Metropolitan-scale Mobility Digital Twin', in Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, in WSDM '23. New York, NY, USA: Association for Computing Machinery, Feb. 2023, pp. 1301-1302. doi: 10.1145/3539597.3575782.
H. Li, H. Lu, C. S. Jensen, B. Tang, and M. A. Cheema, 'Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects', ACM Comput Surv, vol. 55, no. 3, p. 57:1-57:41, Feb. 2022, doi: 10.1145/3498338.
'Local Digital Twins: Forging the Cities of Tomorrow | Shaping Europe's digital future'. Accessed: Mar. 16, 2025. [Online]. Available: https://digital-strategy.ec.europa.eu/en/library/local-digital-twins-forging-cities-tomorrow
'Minimal Interoperability Mechanisms: Advancing Europe's digital future | data.europa.eu'. Accessed: Mar. 16, 2025. [Online]. Available: https://data.europa.eu/en/news-events/news/minimal-interoperability-mechanisms-advancing-europes-digital-future
'Creating a common European mobility data space - European Commission'. Accessed: Mar. 16, 2025. [Online]. Available: https://transport.ec.europa.eu/transport-themes/smart-mobility/creating-common-european-mobility-data-space_en
'Smart Data Models', Smart Data Models. Accessed: Mar. 16, 2025. [Online]. Available: https://smartdatamodels.org/
'Home - Gaia-X: A Federated Secure Data Infrastructure'. Accessed: Mar. 16, 2025. [Online]. Available: https://gaia-x.eu/
'Procurement for the development of the Local Digital Twins toolbox | Shaping Europe's digital future'. Accessed: Mar. 16, 2025. [Online]. Available: https://digital-strategy.ec.europa.eu/en/funding/procurement-development-local-digital-twins-toolbox
'Citcom.ai'. Accessed: Mar. 16, 2025. [Online]. Available: https://www.list.lu/en/informatics/project/citcomai/